期刊文献+

基于映射字典学习的跨模态哈希检索 被引量:4

Projective Dictionary Learning Hashing for Cross-modal Retrieval
下载PDF
导出
摘要 针对网络上出现越来越多的多模态数据,如何在海量数据中检索不同模态的数据成为一个新的挑战.哈希方法把数据映射到Hamming空间,大大降低了计算复杂度,为海量数据的跨模态检索提供了一条有效的路径.然而,大部分现存方法生成的哈希码不包含任何语义信息,从而导致算法性能的下降.为了解决这个问题,本文提出一种基于映射字典学习的跨模态哈希检索算法.首先,利用映射字典学习一个共享语义子空间,在子空间保持数据模态间的相似性.然后,提出一种高效的迭代优化算法得到哈希函数,但是可以证明问题的解并不是唯一的.因此,本文提出通过学习一个正交旋转矩阵最小化量化误差,得到性能更好的哈希函数.最后,在两个公开数据集上的实验结果说明了该算法优于其他现存方法. With the sharp increasing of multi-modal data on the internet, retrieving samples with different modalities has become a challenge, hashing methods, which map the data to Hamming space to reduce computational cost, can provide an effective way for large-scale cross-modal retrieval. However, the hashing codes of most existing methods do not contain any semantic information, which degrades the performance. To address this issue, we propose a cross-modM hashing method, termed projective dictionary learning hashing (PDLH) method. Firstly, projective dictionary learning is employed to learn a sharing semantic subspace by preserving the inter-modal similarity. Then an efficient iterative optimal algorithm is proposed to gain hashing hmctions. However, the solution is not a unique solution, as proven in this paper. To further improve the performance of the proposed method, an orthogonal rotation matrix is learned by minimizing the quantization loss for better hashing functions. Finally, experimental results on two widely used datasets show that the performance of the proposed method is better than those of the existing methods.
作者 姚涛 孔祥维 付海燕 TIAN Qi YAO Tao;KONG Xiang-Wei;Fu Hai-Yan;TIAN Qi(Department of Information and Communication Engineering,Dalian University of Technology,Dalian 116024,China;Department of Information and Electrical Engineering,Ludong University,Yantai 264025,China;Department of Data Science and Engineering Management,Zhejiang University,Hangzhou 310058,China;Department of Computer Science,University of Texas at San Antonio,San Antonio 78249,USA)
出处 《自动化学报》 EI CSCD 北大核心 2018年第8期1475-1485,共11页 Acta Automatica Sinica
基金 国家自然科学基金(71421001 61502073 61172109 61429201) 模式识别国家重点实验室开放课题(201407349)资助~~
关键词 跨模态检索 哈希 映射字典学习 汉明空间 Cross-modal retrieval hashing project dictionary learning Hamming space
  • 相关文献

参考文献6

二级参考文献283

  • 1张海,王尧,常象宇,徐宗本.L_(1/2)正则化[J].中国科学:信息科学,2010,40(3):412-422. 被引量:15
  • 2Wright J, Yang A Y, Ganesh A, Sastry S S. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 3Engan K, Aase S O, Hakon H J. Method of optimal directions for frame design. In: Proceedings of Acoustics, Speech, and Signal Processing. Arizona, USA: IEEE, 1999, 5: 2443-2446.
  • 4Aharon M, Elad M, Bruckstein M A. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
  • 5Yang M, Zhang L, Feng X. Fisher discrimination dictionary learning for sparse representation. In: Proceedings of 2011 IEEE International Conference on Computer Vision(ICCV). Barcelona, Spain: IEEE, 2011. 543-550.
  • 6He X F, Niyogi P. Locality preserving projections. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2003. 152-160.
  • 7Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299-1319.
  • 8Mike S, Ratsch G, Scholkopf B, Weston J, Muller R K. Fisher discriminant analysis with kernels. In: Proceedings of the 1999 IEEE Signal Processing Society Workshop. Madison, WI: IEEE, 1999. 41-48.
  • 9Lu J W, Plataniotis K N, Venetsanopoulos A N. Face recognition using kernel direct discriminant analysis algorithms. IEEE Transactions on Neural Networks, 2003, 14(1): 117-126.
  • 10Gao S, Tsang I, Chia L T. Sparse representation with kernels. IEEE Transactions on Image Processing, 2013, 22(2): 423-434.

共引文献183

同被引文献16

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部