期刊文献+

PSO-SVR模型在油井产能预测中的应用 被引量:2

Application of PSO-SVR Model in Oil Well Productivity Prediction
下载PDF
导出
摘要 针对支持向量回归机(Support Vector Regression,SVR)用于油井产能预测中模型参数具有不确定的问题,采用粒子群算法(Particle Swarm Optimization,PSO)对支持向量回归机参数进行优化,减少模型参数的不确定性,产能数据测试表明,PSO能快速,准确地优化SVR参数,二者的结合有效地进行产能预测,并取得较为理想的效果。 In order to solve the uncertainties of model parameters in support vector regression(SVR) for oil well productivity prediction, Particle Swarm Optimization(PSO) is used to optimize support vector regression parameters to reduce the uncertainty of model parameters. The test of production data shows that the PSO can quickly and accurately optimize the SVR parameters. The combination of the two can effectively predict the production capacity and achieve a satisfactory result.
作者 殷荣网 周睿 YIN Rong-wang, ZHOU Rui (Department of Basic Teaching and Experiment, HeFei University, Hefei 230601, China)
出处 《电脑知识与技术》 2018年第6期189-190,共2页 Computer Knowledge and Technology
基金 安徽省教育厅自然科学基金项目(KJ2015B1105917)
关键词 PSO优化 SVR 参数优化 产能预测 PSO optimization SVR parametersoptimization productivity prediction
  • 相关文献

参考文献4

二级参考文献48

共引文献956

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部