期刊文献+

一类三次Lie'nard系统的稳定性与Hopf分支分析

Stability and Hopf Bifurcation Analysis for a Class of Cubic Lie'nard Systems
下载PDF
导出
摘要 研究了一类三次Lie'nard系统当其参数发生微小改变时系统相图的基本结构变化情况.应用Hopf分支理论进行包括分支方向、轨道稳定性等分析,得出了系统在参数取某特定值时会发生Hopf分支,并运用Matlab软件进行数值模拟验证了所得结论的正确性. A class of cubic liefiard systems that contains parameters was studied The basic structure of the systems will change when the parameter values change slightly. With Hopf bifurcation theory, the bifurcation direction and track stability of the systems were analyzed. The results show that Hopf bifurcation occurs when the parameters of the systems are specified as certain fixed values. Numerical simulation with Matlab proves that the obtained conclusion is correct.
作者 朱士军 ZHU Shijun(Luoding Vocational College of Technology,Luoding,Guangdong 527200,China)
出处 《玉溪师范学院学报》 2018年第4期11-15,共5页 Journal of Yuxi Normal University
基金 广东省数学会教科研课题项目 编号:粤数分会研(2016)22号
关键词 三次Lie'nard系统 奇点 稳定性 HOPF分支 cubic Liehard systems equilibrium point stability Hopf bifurcation
  • 相关文献

参考文献3

二级参考文献6

  • 1SMOLEN P, BAXTER D A, BYRNE J H. Frequency selectivity, multistability, and oscillations emerge from models ofgenetic regulatory systems[J]. Amer J Phys, 1998,274 :C531-C542.
  • 2WAN A Y,ZOU X F.Hopf bifurcation analysis for a model of genetic regulatory system with delay[J].J Math Anal Ap-pl, 2009,365: 464-476.
  • 3CAO J Z,JIANG H J.Stability and Hopf bifurcation analysis on Goodwin model with three delays[J], Chaos SolitonsFractals,2011,44 :613-618.
  • 4CAO J Z,JIANG H J. Hopf bifurcation analysis for a model of single genetic negative feedback autoregulatory systemwith delay[J].Neurocomputing,2013,99 : 381-389.
  • 5YU T T,ZHANG X,ZHANG G D,et al.Hopf bifurcation analysis for genetic regulatory networks with two delays[J].Neurocomputing,2015,164 : 190-200.
  • 6WIGGINS S.Introduction to applied nonlinear dynamical systems and chaos[M].New York :Springer,2003.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部