摘要
为了满足高性能光电器件对单层MoS_2的需要,文中采用扫描电镜和拉曼光谱,研究了保温生长时间和氩气流速对硫化三氧化钼化学气相沉积法在蓝宝石衬底上生长MoS_2形貌、尺寸、结构和层数的影响.研究结果表明:在反应物质量比和反应温度一样的条件下,沉积产物的种类主要受氩气流速的影响,氩气流速为30sccm时,沉积产物为菱形MoS_2与MoO_2的混合物;氩气流速为50,70sccm时,沉积产物为单层三角形MoS_2.MoS_2的结构主要受保温生长时间的影响,保温生长时间为15,30min时,沉积产物为单层三角形MoS_2;保温生长时间达到60min后,生长物为连成一片的多层MoS_2.单层MoS_2的尺寸随保温生长时间和氩气流速的增大而增大,当保温时间为30min,氩气流速为70sccm时,生长出了尺寸达到90μm的单层三角形MoS_2.
In order to make single-layer MoS2 meet the need of high-performance photoelectric devices, the paper studies, using a scanning electron microscope and Raman spectrum, the effects of holding time and argon flow rate on the morphology, size, structure and layer number of MoS2 which is deposited on the sapphire substrate by the vulcanized molybdenum trioxide chemical vapor deposition method. The study finds that the types of the deposited product depends mainly on the argon flow rate when the mass ratio of S/MoO3 and the reaction temperature are constant. When the argon gas rate is 30 sccm, the deposited product is a mixture of molybdenum disulphide and molybdenum dioxide. When the argon flow rates are 50,70 sccm, the deposited product is triangular single-layer MoS2. The structure of MoS2 is mainly dependent on holding time. When the holding time is 15,30 min,the deposited product is single- layer MoS2. When the holding time exceeds 60 min,the deposited product is multilayer MoS2. The size of the single-layer MoS2 increases with the increase in holding time and argon time is 30 min and the argon flow rate is 70 sccm,the size of the deposited flow rate. When the triangle single-layer holding MoS2 is up to 90 μm.
作者
坚佳莹
常洪龙
岳皎洁
董芃凡
孙娴
JIAN Jiaying;CHANG Honglong;YUE Jiaojie;DONG Pengjan;SUN Xian(School of Electronic Information Engineering,Xi' an Technological University,Xi' an 710021,China;School of Mechanical Engineering,Northwestern Polytechnical University,Xi'an 710072,China)
出处
《西安工业大学学报》
CAS
2018年第4期371-376,共6页
Journal of Xi’an Technological University
基金
国家自然科学基金(51671151)
关键词
单层二硫化钼
化学气相沉积
微纳米光电器件
拉曼光谱
single layer MoS2
chemical vapor deposition
nano-photoelectric devices
Raman spectrum