期刊文献+

剪切层强度对湍流分层火焰传播特性的影响 被引量:1

Effect of Shear Layer Strength on Turbulent Stratified Flame Propagation Characteristics
下载PDF
导出
摘要 采用REDIM-PFDF模型对Darmstadt湍流分层火焰进行了大涡模拟,分别计算了有分层无剪切效应的状态(A-r)和有分层有剪切的状态(C-r),研究分析了分层剪切效应对于湍流分层火焰传播机制的影响.重点对反应层与混合层的交叉角?变化情况进行了详细分析.结果发现,A-r和C-r均以焰后支持火焰传播模式为主,但由于C-r中增加了很强的剪切效应,导致湍流增强,分层效应被弱化,促进了燃料混合,出现焰前支持火焰传播模式的概率有所增加. Large eddy simulations of Darmstadt turbulent stratified flames were performed using the REDIMPFDF model,aiming to investigate the effect of shear layer strength on the propagation characteristics of turbulent stratified flames.Two flame cases,case A-r with stratification and weak shear and case C-r with stratification and strong shear,were simulated.The variation of alignment angle between the reaction layer and the mixing layer was analyzed in detail.It was shown that both A-r and C-r cases were mainly controlled by ‘back-supported' flame propagating mode.However,due to the strong shear effect in C-r,the enhanced turbulence promoted a faster mixing of fuel and air,which resulted in a weakened stratification,and increased the probability for ‘frontsupported' flame propagating mode.
作者 张春 王平 侯天增 王蔡军 余倩 Zhang Chun;Wang Ping;Hou Tianzeng;Wang Caijun;Yu Qian(School of Energy and Power Engineering,Jiangsu University,Zhenjiang 212013,China;Institute for Energy Research,Jiangsu University,Zhenjiang 212013,China)
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2018年第4期376-382,共7页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51576092 91741117) 江苏省自然科学基金资助项目(BK20151344)
关键词 反应-扩散流形 分层火焰 剪切效应 大涡模拟 reaction-diffusion manifold stratified flame shear effect large eddy simulation
  • 相关文献

参考文献1

二级参考文献22

  • 1徐晓光,徐明厚,乔瑜.反应动力学机理简化的研究现状及进展[J].煤炭转化,2004,27(4):1-6. 被引量:7
  • 2Gicquel L, Staffelbach G, Poinsot T. Large eddy simulations of gaseous flames in gas turbine combustion chambers [J]. Progress of Energy Combustion Science, 2012, 38: 782-817.
  • 3Fiorina B, Veynante D, Candel S. Modeling combustion chemistry in large eddy simulation of turbulent flames [J]. Flow Turbulence Combustion, 2015, 94: 3-42.
  • 4Epstein A H. Aircraft engines' needs from combustion science and engineering [J]. Combust. Flame, 2012, 159: 1791-1792.
  • 5Takagi Y. A new era in spark-ignition engines featuring high-pressure direct injection [J]. Proceedings of the Combustion Institute, 1998, 27: 2055-2068.
  • 6Masri A R. Partial premixing and stratification in turbulent flames [J]. Proceedings of the Combustion Institute, 2015, 35: 1115-1136.
  • 7Seffrin F, Fuest F, Geyer D, Dreizler A. Flow field studies of a new series of turbulent premixed stratified flames [J]. Combustion and Flame, 2010, 157: 384-396.
  • 8Kuenne G, Seffrin F, Fuest F. Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and large eddy simulation [J]. Combustion and Flame, 2012, 159: 2669-2689.
  • 9Trisjono P, Kleinheinz K, Kang S, Pitsch H. Large eddy simulation of stratified and sheared flames of a premixed turbulent stratified flame burner using a flamelet model with heat loss [J]. Flow Turbulence Combustion, 2014, 92(1/2): 201-235.
  • 10Wang Ping, Zieker F, Schieβl R, Platova N A, Fr?hlich J, Maas U. Large eddy simulations and experimental studies of turbulent premixed combustion near extinction [J]. Proceedings of the Combustion Institute, 2013, 34(1): 1269-1280.

共引文献4

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部