期刊文献+

平方根UKF算法中奇异值问题的研究 被引量:6

Research on singular value problem in square root UKF algorithm
下载PDF
导出
摘要 针对平方根无迹卡尔曼滤波(UKF)算法在求增益时对量测预测协方差矩阵求逆存在易出现奇异值而使滤波失效的问题,根据平方根UKF算法的步骤,以自由落体目标为例,分析了用平方根UKF算法跟踪目标时奇异值产生的原因,并提出在状态估计协方差矩阵更新中引入多重次可靠性因子.最后对各可靠性因子的取值进行了仿真分析.仿真结果表明,本文方法不仅能对平方根UKF中的奇异值问题有抑制作用,增强了算法的可靠性,还能在一定程度提高算法的滤波性能. To solve the problem that the square root unscented Kalman filter(UKF) algorithm in solving the gain of the measurement prediction covariance matrix inversion is easy to present the singular value which leads to filter failure, and according to the steps of the square root UKF algorithm, this paper uses the free-fall target as an example to analyze the causes of the singular value in using the square root UKF algorithm to track targets, and proposes that multiple reliability factors is introduced into state estimation covariance matrix updating. Finally the paper simulates and analyzes the value of each reliability factor. The results show that the proposed method can not only have the inhibitory effect on the singular value problem of square root in UKF, enhancing the reliability of the algorithm, but also improve the filtering performance of the algorithm to a certain degree.
作者 叶泽浩 毕红葵 张裕禄 朱源才 YE Zehao;BI Hongkui;ZHANG Yulu;ZHU Yuancai(Air Force Early Warning Academy,Wuhan 430019,China;No.95876 Unit,the PLA,Zhangye 734100,China)
机构地区 空军预警学院 [
出处 《空军预警学院学报》 2018年第4期272-275,共4页 Journal of Air Force Early Warning Academy
关键词 平方根UKF 奇异值 滤波失效 多重次 可靠性因子 square root unscented Kalman filter (square root UKF) singular value filtering failure multiple reliability factors
  • 相关文献

参考文献5

二级参考文献50

  • 1GAN QingBo1,2,MA JianBo1 & XU Jin1 1 Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210008,China,2 Graduate University of Chinese Academy of Sciences,Beijing 100049,China.Autonomous satellite constellation orbit determination using the star sensor and inter-satellite links data[J].Science China(Physics,Mechanics & Astronomy),2010,53(5):966-974. 被引量:3
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 3胡洪涛,敬忠良,胡士强.一种基于Unscented卡尔曼滤波的多平台多传感器配准算法[J].上海交通大学学报,2005,39(9):1518-1521. 被引量:15
  • 4SIMON H. Kalman Filtering and Neural Networks[M]. New York: John Wily & Sons, Inc, 2001.
  • 5ERIC W, RUDOLPH M, NELSON A T. Dual estimation and the unscented transformation[J]. Advances in neural information processing systems, 2000, 12(1): 666 - 672.
  • 6RASMUSSEN C E, WlLLANMS C K I. Gaussian Processes for Machine Learning[M]. Boston: MIT Press, 2005.
  • 7FERRIS B, HAHNEL D, FOX D. Gaussian processes for signal strength-based location estimation[C]//Proceedings of Robotics: Science and Systems. USA: Philadelphia, 2006:207 - 213.
  • 8PLAGENMAN C, FOX D, BURGARD W. Efficient failure detection on mobile robots using Gaussian process proposals[C]//Proceedings of the International Joint Conference on Artificial Intelligence. INDIA: Hyderabad, 2007:378 - 384.
  • 9MACKAY D J C. Comparison of approximate methods for handling hypcrparameters[J]. Neural Computation, 1999, 12(7): 278 - 286.
  • 10DAVID H, TIITERTON, WESTON J L. Strapdown Inertial Navigation Technology[M]. Stevenage, IEE, 2004.

共引文献61

同被引文献44

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部