期刊文献+

固体颗粒分布对轴承润滑的影响 被引量:4

Effects of Solid Particles Distribution on Bearing Lubrication
下载PDF
导出
摘要 基于格子-波兹曼方法 (LBM)理论,分析含固体颗粒的轴承润滑问题。通过建立润滑油的理论离散模型,分析固体颗粒分布对于油膜压力、润滑油流速的影响。分析结果表明:在油膜厚度方向分布的固体颗粒越多,颗粒的分布形式对润滑油流动的阻碍能力越强,则其对于油膜压力及油膜流动的影响也越大;当分布形式相同时,固体颗粒个数越多对油膜压力的影响越大;即润滑油中所含固体颗粒浓度越大,对润滑的影响程度也越大;无论分布形式如何,固体颗粒对于离颗粒较远的下游区域的速度影响较小。 The bearing lubrication with solid particles in the oil was studied by the Lattice Boltzmann method. The theoretical discrete model of lubricating oil was set up,and the effects of the distribution of particles on the oil film pressure and oil film velocitywas analyzed. It is shown that the more the particles distributed in film thickness direction,the more significantly the distribution of particles hinders the flow of the lubricating oil,the greater the influence on the oil film pressure and the flow of the oil film by the distribution of particles. For a certain distribution of particles,the more the particles in the oil,the more significantly they affect the film pressure. The effects of solid particles distribution on the oil velocity are not obvious at the region far away from particles.
作者 李娜娜 韩海燕 曹凡 LI Nana;HAN Haiyan;CAO Fan(Department of Mechanical Engineering,Xi' an Jiaotong University City College,Xi'an Shaanxi 710018,China)
出处 《润滑与密封》 CAS CSCD 北大核心 2018年第8期32-35,共4页 Lubrication Engineering
基金 陕西省教育厅专项科研计划项目(16JK2098)
关键词 固体颗粒 格子波兹曼 润滑 油膜压力 solid particles Lattice Bohzmann lubrication oil film pressure
  • 相关文献

参考文献6

二级参考文献91

  • 1杨帆,刘树红,吴玉林.垂直转子轴式微型泵的LBM模拟[J].清华大学学报(自然科学版),2005,45(11):1565-1568. 被引量:4
  • 2林宗虎.多相流体力学及其工程应用[J].自然杂志,2006,28(4):200-204. 被引量:14
  • 3Tryggvason G, Bunner B, Esmaeeli A, et al. A front-tracking method for the computations of multiphase flow[ J]. Journal of Computational Physics, 2001,169 ( 2 ) :708 - 759.
  • 4Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow[ J]. Journal of Computational Physics, 1994, 114 ( 1 ) : 146 - 159.
  • 5Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries [ J ]. Journal of Computational Physics, 1981, 39( 1 ) :201 - 225.
  • 6Anderson D M, McFadden G B. Diffuse-interface methods in fluid mechanics[ J]. Annual Review of Fluid Mechanics, 1998, 30 : 139 - 165.
  • 7Chen S, Doolen G D. Lattice Boltzmann method for fluid flows[ J]. Annual Review of Fluid Mechanics, 1998, 30:329 -364.
  • 8Swift M R, Osborn W R, Yeomans J M. Lattice Bohzmann simulation of nonideal fluids[ J]. Physical Review Letters, 1995, "/5(5) :830 -833.
  • 9He X Y, Chen S, Zhang R Y. A lattice Bohzmann scheme for incompressible muhiphase flow and its application in simulation of Rayleigh-Taylor instability [ J ]. Journal of Computational Physics, 1999, 152 (2) :642 - 663.
  • 10Inamuro T, Ogata T, Tajima S, et al. A lattice Bohzmann method for incompressible two-phase flows with large density differences [ J]. Journal of Computational Physics, 2004, 198 (2) :628 - 644.

共引文献31

同被引文献13

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部