期刊文献+

基于BP神经网络的光伏系统故障诊断方法 被引量:14

A Fault Diagnosis Technique for Photovoltaic System Based on BP Neural Networks
下载PDF
导出
摘要 在恶劣多变的环境下,光伏发电系统易发生多种故障,简单的监控及故障诊断技术无法实现系统的智能化和信息化。为此,提出一种基于Levenberg-Marquardt算法的BP神经网络(BPNN)故障诊断方法。获取光伏阵列的输出电压与电流、逆变器输出电压、直流负载电压、辐照度和温度数据,通过LM-BPNN算法挖掘出运行数据与故障模式之间的隐含映射关系,从而识别出光伏发电系统多种故障类型。最后,通过自制光伏电站模拟平台验证了方法的有效性。 Photovoltaic power generation system takes place to malfunctions under the influence of harsh and volatile environment,so simple fault diagnosis and monitoring technology can't realize the intelligent and informatization of power generation system.For this reason,an improved fault diagnosis method based on Levenberg-Marquardt(L-M)algorithm optimized BP neural networks(BPNN)is proposed in this paper.The proposed method selects the total output voltage of photovoltaic array,the total output current of photovoltaic array,the inverter voltage,the load voltage,the overall irradiance and the environmental temperature to mine various operation data and failure modes of the implicit mapping relationship through the LM-BPNN algorithm,and identify the fault types of photovoltaic power generation system.Self-made photovoltaic power plant simulation platform simulates fault conditions and the validity of the proposed method is verified experimentally.
作者 俞玮捷 刘光宇 YU Weijie;LIU Guangyu(School of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2018年第4期52-57,89,共7页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(61174074) 国家重大科研仪器研制资助项目(61427808) 浙江省杰出青年科学基金资助项目(LR14F030001)
关键词 光伏发电系统 BP神经网络 L-M算法 多类型故障 故障诊断 PV power generation system BP neural network L-M algorithm multi - type fault fault diagnosis
  • 相关文献

参考文献2

二级参考文献23

  • 1丁金磊,程晓舫,翟载腾,查珺,茆美琴.决定晶体硅太阳电池工作状态的独立参量的确定[J].中国工程科学,2007,9(4):94-98. 被引量:4
  • 2翟载腾,程晓舫,丁金磊,查珺,茆美琴.最大功率条件下串联太阳电池电流方程的确定[J].中国电机工程学报,2007,27(14):87-90. 被引量:22
  • 3朱双东 艾智斌 等.BP网络学习算法的改进方案探析[M].中国神经网络年会,1995..
  • 4刘俊民 康继昌.关于BP网络及其学习算法参数研究[M].中国神经网络年会,1995..
  • 5Syafaruddin E,Karatepe T H.Controlling of artificial neural network for fault diagnosis of photovoltaic array[C]//16th International Conference on Intelligent System Application to Power Systems.Hersonissos:IEEE,2011:1-6.
  • 6Chouder A,Silvestre S.Automatic supervision and fault detection of PV systems based on power losses analysis[J].Energy Conversion and Management,2010,51(10).1929-1937.
  • 7Nian Bei,Fu Zhizhong.Automatic detection of defects in solar modules:image processing in detecting[C]// International Conference on Wireless Communications Networking and Mobile Computing.Chengdu,China:IEEE,2010:1-4.
  • 8Zhu Yongqiang,Wang Wenshan.Fault diagnosis method and simulation analysis for photovoltaic array[C]//International Conference on Electrical and Control Engineering.Yichang,China:IEEE,2011:1569-1573.
  • 9Takumi T,Junji Y,Masayoshi I.Fault detection by signal response in PV module strings[C]//Photovoltaic Specialists on Industrial Electronics.San Diego,CA,USA:IEEE,2008:1-5.
  • 10Takumi T,Junji Y,Masayoshi I.Disconnection detection using earth capacitance measurement in photovoltaic module string[J].Progress in Photovoltaics,2008,16(8).669-677.

共引文献80

同被引文献77

引证文献14

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部