期刊文献+

投资组合中协方差阵的估计和预测

Estimation and Prediction of Covariance Matrix in Portfolio
下载PDF
导出
摘要 为了解除噪声和跳跃以及维数诅咒对协方差阵估计的影响,将修正的门限预平均已实现协方差阵(MTPCOV)与VAR-LASSO模型相结合,估计和预测高维高频数据的协方差阵,并将其应用在投资组合中。研究发现,由VAR-LASSO模型预测的MTPCOV估计量应用在投资组合中,可以使得投资者获得更高的收益,并降低投资风险。 In order to solve the influence of noise、jump and dimension curse on covariance matrix estimation,this paper combines the modified threshold pre-averaging covariance matrix(MTPCOV)with VAR-LASSO model,to estimate and predict the covariance matrix of high-dimensional and high-frequency data.The main finding is:The MTPCOV which is predicted by the VAR-LASSO model can be used in the portfolio to gain higher profits and reduce investment risk.
作者 刘丽萍 LIU Li-ping(School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guiyang 550025,China)
出处 《经济研究导刊》 2018年第24期92-94,123,共4页 Economic Research Guide
基金 2016年国家社会科学研究项目(16CTJ013)
关键词 金融协方差阵 MTPCOV估计量 VAR-LASSO模型 financial c ovariance matrix MTPCOV VAR-LASSO
  • 相关文献

二级参考文献34

  • 1马丹,尹优平.交易间隔、波动性和微观市场结构——对中国证券市场交易间隔信息传导的实证分析[J].金融研究,2007(07A):165-174. 被引量:15
  • 2Andersen, T. G. , Bollerslev, T. , Diebold, F. , et al. , 2000, "Exchange rate returns standardized by realize volatility are (Nearly) Gaussian," Multinational Finance Journal, 3(4), pp. 159 - 179.
  • 3Andersen, T. G. , Dobrislav Dobrev, Ernst Schaumburg Dobrislav Dobrev; Ernst Schaumburg, 2010, "Jump - robust vol-atility estimation using nearest neighbor truncation," NBER Working Paper No. 15533. http://www, nber. org,/papers/ w15533, pdf? newwindow = 1.
  • 4Barndorff-Nielsen, O. E. , Shephard, N. , 2004, "Power and bipower variation with stochastic volatility and jumps," Journal of Financial Econometrics, 2 ( 1 ) , pp. 1 - 48.
  • 5Bamdofff-Nielsen, O.E., Barndorff- Nielsen, O.E., P.R. Hansen, A. Lunde, and N. Shephard ,2006, "Desig- ning realised kernels to measure the ex - post variation of equity prices in the presence of noise," Econometrica ,76 (6), pp. 1481 - 1536.
  • 6C Mancini and Roherto Ren, 2011 ," Threshold estimation of Markov models with jumps and interest rate modeling Real- ized Volatility," Journal of Econometrics Volume, 160( 1 ) , pp. 77 -92.
  • 7Fan, J. and Wang, Y, 2007, "Multi - Scale Jump and Volatility Analysis for High - Frequency Financial Data," Journal of American Statistical Association, ( 102), pp. 1349 - 1362.
  • 8Fulvio Corsi, Davide Pirino and Roberto Ren, 2010, "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, 159(2) , pp. 276 -288.
  • 9Jacod,J. , Li, Y., Mykland, P. A., Podolskij, M. , et al. 2009, " Microstructure Noise in the Continuous Case: The Pre - Averaging Approach," Stochastic Processes and their Applications. 119 (7), pp. 2249 - 2276.
  • 10K. Christensen, R. Oomen and M. Podolskij, 2011, "Realised quantile -based estimation of the integrated variance," Journal of Econometrics 159( 1 ) , pp. 74 -98.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部