期刊文献+

小额贷款公司客户违约行为影响因素的实证研究——基于长沙市的调查

Empirical Study on the Influencing Factors of Clients Default Behavior of Microloan Company: Based on the Investigation of Changsha
原文传递
导出
摘要 基于长沙市25家正常经营的小额贷款公司贷款样本数据,运用Logit模型实证分析了小额贷款公司客户违约行为的影响因素。研究发现:小额贷款公司客户的年龄、学历、从业时间、所属行业和贷款抵押物对小额贷款公司客户违约行为有显著影响;而贷款金额和还款方式对小额贷款公司客户违约行为没有显著影响。为提高小额贷款公司信用风险评估的有效性、降低贷款违约率,小额贷款公司应创新抵押方式、重点对有违约风险的客户进行贷后管理、优化贷款审批流程、建立完善数据库。 Based on the sample data of loan of 25 microfinance companies operating normally in Changsha, this study uses the Logit model to empirically analyze the influencing factors of clients default behavior of microloan company. The study found that: the customers' age, education background, working time, industry and loan collateral have a significant impact on the default behavior of the clients of the micro - finance companies ; while the loan amount and repayments Of the loans to the micro - finance company customers' default have no significant effect. In order to make microcredit companies' credit risk assess effectively, the default rate of loan reduced, it is proposed that the microcredit company should innovate the mortgage method, focusing on the loan default management for clients with risk of default, optimizing loan approval process, establishing perfect database and so on.
作者 鲁斯玮 陈波 向俊伟 文馨敏 Lu Siwei;Chen Bo;Xiang Junwei;Wen Xinmin(School of Economics,Hunan Agricultural Universit)
出处 《金融发展评论》 2018年第4期72-80,共9页 Financial Development Review
关键词 小额贷款公司 客户 违约行为 影响因素 LOGIT模型 Microloan Company Clients Default Behavior Influencing Factors Logit Model
  • 相关文献

参考文献1

二级参考文献7

  • 1Isabelle Guyon,Jason Weston,Stephen Barnhill,Vladimir Vapnik.Gene Selection for Cancer Classification using Support Vector Machines[J]. Machine Learning . 2002 (1)
  • 2Robert DeYoung,Dennis Glennon,Peter Nigro.Borrower–lender distance, credit scoring, and loan performance: Evidence from informational-opaque small business borrowers[J]. Journal of Financial Intermediation . 2007 (1)
  • 3程砚秋.基于支持向量机的农户小额贷款决策评价研究[D].大连理工大学2011
  • 4An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data[J]. European Journal of Operational Research . 2012 (1)
  • 5Kyoung-jae Kim,Hyunchul Ahn.A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach[J]. Computers and Operations Research . 2011 (8)
  • 6Xiaofei Zhou,Wenhan Jiang,Yong Shi.Credit risk evaluation by using nearest subspace method[J]. Procedia Computer Science . 2010 (1)
  • 7Shi B.F,Chi G.T.A Credit Risk Evaluation Index Screening Model of Petty Loans for Small Private Business and Its Application. Advances in Information Sciences and Service Sciences . 2013

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部