期刊文献+

载气对化学气相沉积中气体流场、反应物与热解炭沉积率影响的仿真研究(英文) 被引量:5

Numerical simulation of carrier gas effects on flow field,species concentration and deposition rate in the chemical vapor deposition of carbon
下载PDF
导出
摘要 为了研究载气对化学气相沉积过程的影响,采用二维仿真模型,模拟立式反应炉中化学气相沉积过程。并建立了全组分扩散模型描述化学气相沉积过程中气体分子间的扩散过程。研究了氢气,氮气和氩气对气体流场,反应物浓度场以及热解炭沉积率的影响。结果表明,氢气有利于提高气体流场的稳定性;氢气有利于反应物的扩散,以氢气作为载气时,沉积壁面CH_4,C_2H_2,C_2H_4和C_6H_6的浓度均匀性较好。采用氩气和氮气作为载气时,沉积率均高于氢气做载气的情况,但热解炭的沉积均匀性低于氢气做载气时的情况。仿真结果与实验吻合较好。 A 2D numerical model was established for simulating the chemical vapor deposition( CVD) of carbon in a vertical reactor.A full multi-component diffusion model was proposed to describe the diffusion of the gas species. The effects of Ar,N2 or H2 carrier gases on the flow field,species concentration and deposition rate of pyrocarbon were investigated using C3H6 as the carbon source. Results show that H2 improves the stability of the gas flow. The concentration distributions of CH4,C2 H2,C2H4 and C6H6 are uniform in H2. The pyrocarbon deposition rate is lowered,but the uniformity of deposition is improved when H2 is used as the carrier gas compared with N2 or Ar. The simulation results agree well with the experimental ones.
作者 殷腾 蒋炳炎 苏哲安 樊哲琼 黄启忠 YIN Teng;JIANG Bing-yan;SU Zhe-an;FAN Zhe-qiong;HUANG Qi-zhong(State Key Laboratory of High-Performance Complex Manufacturing,Central South University,Changsha 400083,China;State Key Laboratory of Powder Metallurgy,Central South University,Changsha 400083,China)
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2018年第4期357-363,共7页 New Carbon Materials
基金 Student Creative Program of Mechanical Engineering Department of Central South University(2014bcsjj04)~~
关键词 化学气相沉积 扩散 仿真 载气 Chemical vapor deposition Diffusion Simulation Carrier gas
  • 相关文献

参考文献2

二级参考文献16

  • 1Delhaes P. Chemical vapor deposition and infiltration processes of carbon materials[J]. Carbon, 2002, 40(5):641-657.
  • 2Boccaccini A R, Ponton C B, Chawla K K. Development and healing of matrix microcracks in fibre reinforced glass matrix composites:assessment by internal friction[J]. Materials Science and Engineering A, 1998, 241(1):141-150.
  • 3Shengru Q, Shaorong Z, Shihong B, et al. The internal friction of unidirectional C/C composites fabricated in a magnetic field[J]. Carbon, 1997, 35(3):389-392.
  • 4Hou Xianghui, Li Hejun, Shen Jian, et al. Effects of microstructure on the internal friction of carbon-carbon composites[J]. Materials Science and Engineering A, 2002, 286(2):250-256.
  • 5Cheng J, Li H J, Zhang S Y, et al. Internal friction behavior of unidirectional carbon/carbon composites after different fatigue cycles[J]. Materials Science and Engineering A, 2014, 600:129-134.
  • 6Yasuo Kogo, Yoshie Iijima, Naohiro Igata. Enhancement of internal friction of carbon-carbon composites by selective oxidation[J]. Journal of Alloys and Compounds, 2003, 355(1-2):154-160.
  • 7Wang C, Zhu Z G, Hou X H, et al. Damping characteristics of CVI-densified carbon-carbon composites[J]. Carbon, 2000, 38(13):1821-1824.
  • 8Yin J, Xiong X, Zhang H B, et al. Microstructure and ablation performance of dual-matrix carbon/carbon composites[J]. Carbon, 2006, 44(9):1690-1694.
  • 9Vallerot J M, Bourrat X, Mouchon A, et al. Quantitative structural and textual assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques[J]. Carbon, 2006, 44(9):1833-1844.
  • 10Granato A, Lücke K. Theory of mechanical damping due to dislocations[J]. Journal of Applied Physics, 1956, 27:583-593.

共引文献7

同被引文献44

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部