期刊文献+

分形理论和图像纹理特征在肺结节诊断中的应用 被引量:1

The application of fractal theory and imaging textural feature for diagnosing pulmonary nodule
下载PDF
导出
摘要 目的:探讨分析理论和图像纹理特征分析法在肺结节诊断中的作用。方法:收集104例经临床手术病理证实的肺结节患者,采用水平集模型自动分割、提取肺结节,用分维数和灰度共生矩阵法对良、恶性结节特征进行比较。结果:运用不同大小的"盒"计算出的分维数(DF)值不同:肺癌结节DF1=1.82±0.140,DF2=1.78±0.137,DF3=1.70±0.138,DF4=1.64±0.140。非肺癌结节:DFI=1.74±0.144,DF2=1.64±0.201,DF3=1.54±0.227,DF4=1.50±0.207;肺良性结节的能量、对比度、逆差距、相关性及熵分别为0.984 15±0.014 59,0.019 53±0.010 56,0.999 65±0.000 19,0.973 79±0.011 29,0.061 76±0.048 03;肺恶性结节的能量、对比度、逆差距、相关性及熵分别为0.972 23±0.022 15,0.026 29±0.011 62,0.999 53±0.000 20,0.958 40±0.034 88,0.099 89±0.065 19。结论:肺良恶性结节图像纹理及分维数存在差异,基于灰度共生矩阵图像纹理统计方法和分形理论对肺结节的CT诊断有重要的辅助价值。 Objective:To prospectively study The application of fractal theory and imaging textural feature for diagnosing pulmonary nodule.Methods:104 cases which were confirmed by clinical surgery pathology of patients with pulmonary nodules were collected.The cases were analyzed by the level set model automatic segmentation and extraction of pulmonary nodules,compared benign and malignant nodule feature by fractal dimension and gray level co-occurrence matrix characteristics.Results:using different sizes of "box" to calculate the fractal dimension(DF) value of the different:The lung cancers nodules DF1=1.82 and 0.140,DF2=1.78±0.137,DF3=1.70±0.138,DF4=1.64±0.140.Not lung cancers nodules:DF1)=1.74±0.144,DF2=1.64±0.201,DF3=1.54±0.227,DF4=1.50±0.207;Energy,contrast,distance,correlation and entropy of benign nodule were 0.984 15±0.014 59,0.019 53±0.010 56,0.999 65±0.000 19,0.973 79±0.011 29,0.061 76±0.048 03,and energy,contrast,distance,correlation and entropy of malignant nodule were 0.972 23±0.022 15,0.026 29 ±0.011 62,0.999 53±0.000 20,0.958 40±0.034 88,0.099 89±0.065 19.Conclusion:The image texture feature and fractal dimension of benign and malignant lung nodules were difference.The method which based on the gray level co-occurrence matrix of image statistics and fractal theory to CT diagnosing pulmonary nodule was significant.
作者 陈广源 覃丽虹 史长征 陈汉威 罗良平 李耀国 Chen Guangyuan;Qin Lihong;Shi Changzheng;Chen Hanwei;Luo Liangping;Li Yaoguo(Department of Radiology,Panxu Central Hospital,Guangzhou,Guangdong 511400,China;Department of Radiology,The First Affiliated Hospital of Jinan University,Guangzhou,Guangdong 510632,China)
出处 《广州医科大学学报》 2017年第4期15-17,共3页 Academic Journal of Guangzhou Medical University
关键词 肺结节 纹理特征 体层摄影术 X线计算机 分形理论 pulmonary nodule textural feature section radiology X ray computed tomography fractaltheory
  • 相关文献

参考文献1

二级参考文献18

  • 1[1]Manderobrot BB.The Fractal Geometry of Nature.New York:Freeman WH,1982.1-83.
  • 2[2]Carrozzi M,Accardo A,Bouquet F.Analysis of sleep-stage characteristics in full-term newborns by means of spectral and fractal parameters.Sleep,2004,27(7):1384-1393.
  • 3[5]Liu JZ,Yang Q,Yao B,et al.Linear correlation between fractal dimension of EEG signal and handgrip force.Biol Cybern,2005,93(2):131-140.
  • 4[6]Lee JM,Kim DJ,Kim IY,et al.Nonlinear-analysis of human sleep EEG using detrended fluctuation analysis.Med Eng Phys,2004,26(9):773-776.
  • 5[7]Bergey GK,Frana szszuk J.Epileptic seizures are characterized by changing signal complexity.Clin Neurophysiol,2001,112(2):241-249.
  • 6[8]Liu JZ,Zhang LD,Yue GH.Fractal dimension in human cerebellum measured by magnetic resonance imaging.Biophys,2003,85(6):4041-4046.
  • 7[9]Zook JM,Iftekharuddin KM.Statistical analysis of fractal-based brain tumor detection algorithms.Magn Reson Imaging.2005,23(5):671-673.
  • 8[10]Nagao M,Sugawara Y,Ikeda M,et al.Heterogeneity of cerebral blood flow in frontotemporal lobar degeneration and Alzheimer's disease.Eur J Nucl Med Mol Imaging,2004,31(2):162-168.
  • 9[11]Yoshikawa T,Murase K,Oku N,et al.Quantification of the heterogeneity of cerebral blood flow in vascular dementia.J Neurol,2003,250(2):194-200.
  • 10[15]Oczeretko E,Juczewska M,Kasacka I.Fractal geometric analysis of lung cancer angiogenic patterns.Folia Histochem Cytobiol,2001,39(2):75-76.

共引文献3

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部