期刊文献+

风力机智能叶片气弹建模与主动控制仿真研究 被引量:1

Study on Aeroelastic Modeling and Active Control Simulation of Smart Wind Turbine Blades
下载PDF
导出
摘要 为研究大型风力机智能叶片的气弹特性及尾缘襟翼对叶片形变和疲劳载荷的影响,以带有尾缘襟翼的NREL 5 MW参考风力机为研究对象,综合柔性叶片的旋转、重力、阻尼和气弹耦合等因素,建立了智能叶片多模态挥舞气弹模型,并与FAST平台进行仿真对比。基于LMS算法设计了尾缘襟翼主动控制器,在湍流风况下对叶尖偏移量进行控制仿真。结果表明:该气弹模型的准确度较高;尾缘襟翼主动控制方法可以有效减小叶尖偏移量波动并降低叶片疲劳载荷。 To study the aeroelastic characteristics of smart blades on a large-scale wind turbine and the effects of trailing edge flaps (TEFs) on the deformation and fatigue load of blades, taking NREL 5 MW reference wind turbine with TEFs as an object of study, a multimodal flapwise aeroelastic model of smart blade was established considering the factors of rotation, gravity, damping and aeroelastic coupling of the flexible blades, and subsequently the results were compared with that of FAST. Furthermore, a TEF ac- tive controller was designed based on the least mean square (LMS) algorithm, and a control simulation was conducted for the blade tip deflection under turbulent wind condition. Results show that the accuracy of the aeroelastic model is relatively high, and the TEF active control method can effectively reduce the fluctuation of blade tip deflection and the fatigue load of related blades.
作者 张文广 刘瑞杰 王奕枫 ZHANG Wenguang;LIURuijie;WANG gifeng(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China;Key Laboratory of Measurement Control New Technology and System for Industrial Process,North China Electric Power University,Beijing 102206,China)
出处 《动力工程学报》 CAS CSCD 北大核心 2018年第8期665-673,共9页 Journal of Chinese Society of Power Engineering
基金 国家重点研发计划资助项目(2017YFB0602105) 北京市共建基金资助项目(GJ2017006)
关键词 大型水平轴风力机 智能叶片 尾缘襟翼 气弹建模 LMS算法 large-scale horizontal axis wind turbine smart blade trailing edge flap aeroelastic modeling LMS algorithm
  • 相关文献

参考文献3

二级参考文献18

  • 1SNEL H, SCHEPERS J G. Investigation and model- ling of dynamic inflow effects [M]. Netherlands: Netherlands Energy Research Foundation ECN, 1993.
  • 2叶航冶.风力发电机组检测与控制[M].上海:机械工业出版社,2011.
  • 3仇永兴,梁俊宇,康顺.电网电压跌落过程中风轮气动特性研究[C]//2014年中国工程热物理学会工程热力学与能源利用、热机气动热力学和流体机械学术会议.北京:中国工程热物理学会,2014:147093.
  • 4沈听.水平轴风力机气动性能预测及优化设计[D].上海:上海交通大学,2014.
  • 5QIU Yongxing, WANG Xiaodong, KANG Shun, et al. Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method[J]. Renewable Energy, 2014, 70.. 93-106.
  • 6NIEBSCH J, RAMLAU R, NGUYEN T T. Mass and aerodynamic imbalance estimates of wind turbines [J]. Energies, 2010, 3(4): 696-710.
  • 7CHATTOT J J, BRAATEN M E. Wind turbine pitch change simulation with helicoidal vortex model [C]//ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen, Denmark: 2012 : 789-796.
  • 8PATRICK J. Aerodyn theory manual[M]. Golden, Colorado,USA.. National Renewable Energy Labora- tory,2005.
  • 9JONKMAN J M, BUHL J M L. FAST user's guide [M]. Goldea, Colorado, USA: National Renewable Energy Laboratory, 2005.
  • 10MANWELL J F, MCGOWAN J G, ROGERS A L. Wind energy explained: theory, design and application [M]. Manhattan,USA:John Wiley Sons, 2010.

共引文献6

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部