摘要
频率模型平均估计近年来受到较多关注,但目前文献对有测量误差数据的模型平均估计方法研究较少.文章考虑异方差线性测量误差模型平均估计方法,基于Mallows权重选择准则提出了新的模型平均估计,并在理论上证明了其渐近最优性.模拟结果表明,新方法相较于一些常用的模型平均(如SAIC,SBIC)与模型选择方法(如AIC,BIC)具有较大优势.
Frequentist model averaging estimation receives much attention in recent years, but there is rare investigation for data with measurement errors. In this paper, the method of model averaging is applied to heteroscedastic linear models with measurement errors, and we obtain the new model averaging estimator based on the Mallows criterion. The asymptotic optimality of the estimator is proved. In a simulation experiment, we show that the new method performs better than some commonly used model averaging methods(such as SAIC and SBIC) and model selection methods(such as AIC and BIC).
作者
季琳琳
廖军
宗先鹏
JI Linlin;LIAO Jun;ZONG Xianpeng(School of Mathematical Sciences,Capital Normal University,Beijing 100048)
出处
《系统科学与数学》
CSCD
北大核心
2018年第6期688-701,共14页
Journal of Systems Science and Mathematical Sciences
基金
首都师范大学科技创新服务能力建设-基本科研业务费(科研类)资助课题(025185305000/204)资助课题
关键词
EMMA
异方差
模型平均
测量误差
EMMA
heteroscedasticity
model averaging
measurement errors