期刊文献+

基于95598大数据的电力客户满意度分析 被引量:6

Research on big data analysis of power customer satisfaction
下载PDF
导出
摘要 客户满意度反映了客户期望值与客户体验的匹配程度,是评价客户服务质量的一个重要指标。在电力客户满意度研究中,最重要的是获取真实的客户满意度评价结果。本文利用电力客户服务所积累的真实业务数据,提出了基于分层结构的客户满意度得分判定方法,该方法具有严谨的三层结构设计,与实际数据紧联系,逻辑逐层递进,互为补充,从而实现了从模糊的满意度评价到直观的满意度得分的顺利转化。随后通过实际应用案例研究,将电力客户满意度评价与具体的业务过程相联系,提出研究技术路线,对抽取的业务数据进行满意度得分转化,并利用R语言挖掘客户满意度较低的深层原因。所提方法突出了电力客户服务测评的综合性,能客观地从用户体验的角度反映服务质量,具有现实应用价值。 The customer satisfaction reflects the matching degree of customer expectation and customer experience ,which is an important index to evaluate customer service quality. In the research of customer satisfaction, the most important is to obtain the real customer satisfaction evaluation results and to analyze the key factors that cause the dissatisfaction. Based on the real business data accunmlated by the power customer service, this paper puts forward a method of judging customer satisfaction score with the layered structure. The method is closely related to the actual data, whose logic is progressively progressive, linking the evaluation of customer satisfaction with specific business processes, transfomfing fuzzy satisfaction evaluation into intuitive satisfaction score,the research technology route is put forward. And then, a practical case study is applied to transform the satisfaction score of the extracted actual business data, where uses R language to excavate the underlying reason of low customer satisfaction. The proposed method highlights the comprehensiveness of the power customer service evaluation and objectively reflects the quality of service front the perspective of user experience, which has practical application value.
作者 刘志欣 黄旭 魏加项 于亮 苏保强 张皓 冯冰清 LIU Zhixin;HUANG Xu;WEI Jiaxiang;YU Laing;SU Baoqiang;ZHANG Hao;FENG Bingqing(State Grid Beijing Customer Care Center,Beijing 100078,China)
出处 《电力大数据》 2018年第8期19-24,共6页 Power Systems and Big Data
关键词 电力客户满意度 大数据分析 数据清洗 文本挖掘 R语言 power customer satisfaction big data analysis datacleaning text nfining R language
  • 相关文献

参考文献11

二级参考文献86

共引文献472

同被引文献39

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部