摘要
Newton迭代法和弦截法是对非线性方程求根问题的常用方法。Newton迭代法需要计算一阶导数值,具有二阶收敛速度。弦截法只需要计算函数值,但它的收敛速度没有Newton迭代法快。本文将给出一个不需要计算导数值且具有二阶收敛速度的迭代法(新迭代法),并用数值实验来验证其有效性。
Newton iterative method and secant method are used for solving non linear equations. The Newton iterative method need to calculate the first derivative, it has two order convergence, The secant method only needs to calculate the function value, but its convergence rate is not fast. this paper give an iterative method, it doesn't need to calculate the derivative value and has two order convergence rate, and the numerical experiments to verify its effectiveness.
作者
吴江
WU Jiang(College of Science, Hangzhou Normal University, Hangzhou 310036, China)
出处
《宁波职业技术学院学报》
2018年第4期106-108,共3页
Journal of Ningbo Polytechnic
关键词
迭代法
非线性方程
收敛速度
iteration
nonlinear equation
rate of convergence