期刊文献+

一个具有二阶收敛速度的迭代法

Iterative Method with Two Order Convergence Rate
下载PDF
导出
摘要 Newton迭代法和弦截法是对非线性方程求根问题的常用方法。Newton迭代法需要计算一阶导数值,具有二阶收敛速度。弦截法只需要计算函数值,但它的收敛速度没有Newton迭代法快。本文将给出一个不需要计算导数值且具有二阶收敛速度的迭代法(新迭代法),并用数值实验来验证其有效性。 Newton iterative method and secant method are used for solving non linear equations. The Newton iterative method need to calculate the first derivative, it has two order convergence, The secant method only needs to calculate the function value, but its convergence rate is not fast. this paper give an iterative method, it doesn't need to calculate the derivative value and has two order convergence rate, and the numerical experiments to verify its effectiveness.
作者 吴江 WU Jiang(College of Science, Hangzhou Normal University, Hangzhou 310036, China)
出处 《宁波职业技术学院学报》 2018年第4期106-108,共3页 Journal of Ningbo Polytechnic
关键词 迭代法 非线性方程 收敛速度 iteration nonlinear equation rate of convergence
  • 相关文献

参考文献2

二级参考文献14

  • 1Wang Xinghua.On the zeros of analytic functions. J. of Nature . 1981
  • 2Wang Xinghua,Zheng Shiming and Han Danfu.Convergence on Euler’s series, the iterations of Euler’s and Halley’s families. Acta Mathematics Sinica . 1990
  • 3Wang Xinghua.A summary on continuous complexity theory. Contemporary Mathematics . 1994
  • 4Tarski,A.,Givant,S. R.,McKenzie,R. N. A Decision Method for Elementary Algebra and Geometry . 1951
  • 5X. Wang.Convergence of an iterative procedure (in Chinese). Chinese Science Bulletin . 1975
  • 6Smale,S.Newton’’s method estimates from data at one point. The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics . 1986
  • 7Kantorovich, L V,Akilov, G. P.Functional Analysis. . 1986
  • 8张卷美.一种新的迭代收敛阶数的证明与推广[J].大学数学,2007,23(6):135-139. 被引量:3
  • 9WANG XinghuaDepartment of Mathematics, Hangzhou University, Hangzhou 310028, China.Convergence on the iteration of Halley family in weak conditions[J].Chinese Science Bulletin,1997,42(7):552-555. 被引量:19
  • 10王兴华,郭学萍.Newton法及其各种变形收敛性的统一判定法则[J].高等学校计算数学学报,1999,21(4):363-368. 被引量:16

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部