期刊文献+

基于正交试验的电动汽车电池箱结构优化 被引量:3

Structure Optimization of Electric Vehicle Battery Box Based on Orthogonal Experiment
下载PDF
导出
摘要 电动汽车电池箱设计生产保守,存在质量笨重、结构设计不合理等缺陷。以某型号电动汽车电池箱为研究对象,建立原电池箱有限元模型,分析在颠簸路面的极限工况下的应力和应变。根据第四强度理论,原电池箱节点最大应力值远小于材料屈服极限,原始结构整体有优化设计的余量。基于正交试验设计,考查了材料类型、加强筋形式、材料厚度三因素对电池箱应力、应变、模态与质量的影响。分析研究了多指标因素不同水平下,影响电池箱应力、应变、模态与质量变化及其分布规律。采用综合平衡分析法确定了最优电池箱结构形式,即材料类型采用5052-H32,加强筋形式为纵向布置,材料厚度2.0mm。对最优组合进行数值模拟,电池箱的应力得到了提高,质量减少了65.85%。分析结果表明:进行此优化设计电池箱的综合性能有所提高,有效减轻了电池箱重量,为以后电池箱的设计提供了指导。 The battery box of electric vehicle production followthe principle of conservatism,which caused great weight and unreasonable structure design. For the battery box of a certain type of electric vehicle,a finite element model of the original battery box was established,the stress and strain were analyzed at the extreme conditions of the bumpy road. According to the fourth strength theory,the maximum stress value of the primary battery box is far less than the yield limit of the material,and the original structure can be optimized. Based on orthogonal design,the influences of the material type,the reinforcement form and the material thickness on the stress,strain,mode and quality of the battery box were examined. Furthermore,their impact regulations under different levels of the multi-index factors were analyzed. The optimal battery box structure form is ultimately determined,namely,the material type is 5052-H32,the reinforcement form is arranged in the longitudinal direction,and the material thickness is 2. 0 mm. The optimal combination is simulated numerically. The stress of the battery box was improved and the quality was reduced by 65. 85%. Analysis results showthat,the overall performance of the optimized battery box is improved,the weight of the optimized box is reduced effectively,providing reference for future structural design of battery box.
作者 汤贵庭 张渝 杨平 TANG Gui-ting;ZHANG Yu;YANG Ping(Institute of Intelligent Manutacturing and Automotive,Chongqing Radio and Television University,Chongqing 400052,China;School of Mechanotronics & Vehicle Engineering,Chongqing Jiaotong University,Chongqing 400074,China)
出处 《组合机床与自动化加工技术》 北大核心 2018年第8期60-62,71,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 重庆市青年骨干教师资助项目(2007-49) 重庆市十三五规划项目(2016-GX-192) 2016年重庆市教委科学技术研究项目(KJ1603803)
关键词 电动汽车电池箱 正交试验 结构优化 轻量化设计 有限元分析 battery box of electric vehicle orthogonal experiment sructure optimization lightweight design finite element analysis
  • 相关文献

参考文献9

二级参考文献93

  • 1Ken-ichiro MORI.新型超高强度钢零件热冲压技术(英文)[J].中国有色金属学会会刊:英文版,2012,22(S2):496-503. 被引量:13
  • 2王术新,姜春明.船用柴油发电机组的研究现状与发展趋势[J].舰船科学技术,2004,26(4):23-25. 被引量:4
  • 3任新见,时党勇,汪剑辉.响应面试验设计的正交方法研究[J].山西建筑,2005,31(2):17-18. 被引量:6
  • 4鲁惠民,陈运远,等.机械工程材料性能数据手册[M].北京:机械工业出版社,1994.
  • 5Fujita Nobuhirol, Kusumi Kazuhisa, Nonaka Toshiki, et al. Present situation and future trend of ultra - high strength steel sheets for auto-body [ J]. Nippon Steel Technical Report, 2013, (103) : 99 -103.
  • 6De Sen Yang, Wen Liu, Guang Jun Hu, et al. Study on hot forming process and spring-back of ultra-high strength steel based on ABAQUS [J]. Advanced Materials Research, 2012, (482 - 484) : 2454 - 2459.
  • 7Wei Liu, Hong-sheng Liu, Zhong-wen Xing, et al. Effect of tool temperature and punch speed on hot stamping of ultra high strength steel [ J ]. Transactions of Nonferrous Metals Society of China, 2012, (22): 534 -541.
  • 8Wei Wang, Yu Liu, Peng Fei Wen, et al. Numerical simulation on the shape of stamping part about hot forming and quenching [J]. Applied Mechanics and Materials, 2013, 328:450 -456.
  • 9李舜.机械疲劳与可靠性设计[M].北意科学出版社,2006:22-28.
  • 10Li Junqiu, Tian Helei, Wu Puen. Analysis of Random Vibration of Power Battery Box in Electric Vehicles [C]. ITEC Asia-Pacific, 2014.

共引文献136

同被引文献18

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部