期刊文献+

基于运算提升的超群的构造验证算法

The verification algorithm of hypergroupconstruction based on operation upgrade
下载PDF
导出
摘要 文章主要对H.S.Wall提出的基于运算提升的超群做进一步的研究,重点探讨了如何利用计算机验证所构造的超群是否合理的问题。首先利用超群的定义和特征,将数学语言转化为计算机语言,得到了超群的等价定义。然后再利用该等价定义,给出了一种验证超群构造是否合理的同构优化算法。最后借助编程软件平台,利用该算法改正了文献中的错误并构造出新的例子,证明了该优化算法的可行性和实用性。 This paper makes a further study of the hypergroup based on operation upgrade proposed by H.S.Wall, and focuses on how to use a computer to verify whether or not the hypergroup constructed is reasonable. First, by using the definition and characteristics of the hypergroup, the mathematical language is transformed into computer language, and we get the equivalent definition of the hypergroup.Then, using the equivalence definition, we give an isomorphism optimization algorithm to verify the rationality of the construction of the hypergroup. Finally, with the aid of the programming software platform, the algorithm is used to correct the errors in the literature and to construct a new example, which proves the feasibility and practicability of the optimization algorithm.
作者 黄永业
出处 《信息通信》 2018年第8期18-19,共2页 Information & Communications
关键词 超群 计算机 验证 构造 优化算法 ihypergroup computer verification construct optimization algorithm
  • 相关文献

参考文献5

二级参考文献18

  • 1陈诚,周玉洁.RSA加密算法及其安全性研究[J].信息技术,2005,29(10):98-100. 被引量:6
  • 2Oliveira H M de,Souza R M C,Kauffman. An efficient multiplex on band-limited channels EA3. Proc of the workshop on coding and cryptography'99[C]. Paris:Springer-Verlag, 1999. 235-241.
  • 3McEliece R J. Finite fields for computer scientists and engineers[M]. Boston:Kluwer Ac Pub, 1987.
  • 4Blahut R E. Transform techniques for error-control codes[J]. IBM J Res Dev, 1979,23:299-314.
  • 5Hong J,Vetterli M. Hartley transforms over finite fields[J]. IEEE Trans Inform, 1993,IT-39:1 628-1 638.
  • 6Miranda J P C L,Oliveira H M de. Some properties of orthogonal galois-field spreading sequenees[A]. Anais do 19° Simposio Brasileiro de Telecomunicaeoes[C]. Fortaleza CE:IEEE Press ,2001.
  • 7Infineon Technologies.Security & Chip Card ICs SLE66CxxxP[M].Germany: Infineon Technologies AG, 1999:160~190.
  • 8白国强.安全椭圆曲线的类型[C].见:陈克非编.信息和通信安全-CCICS2001[C].北京:科学出版社,2001.136-139.
  • 9Koblitz N.Elliptic Curve Cryptosystems[J].Mathematics of Computation, 1987 ;48(177) :203~209.
  • 10Schoof R.Elliptic Curve Over Finite Field and the Computation of Square Roots Mod p[J].Mathematics of Computation,1985;44(170):483~483.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部