期刊文献+

Achieving the high phase purity of CH_3NH_3PbI_3 film by two-step solution processable crystal engineering

Achieving the high phase purity of CH_3NH_3PbI_3 film by two-step solution processable crystal engineering
原文传递
导出
摘要 To date, it is still a great challenge for highly efficient perovskite devices to realize the high quality per- ovskite films with high purity, high coverage ratio and good crystallization by two-step scalable solution method. In this study, a series PbI2 films with tunable micro-architecture of Pbl2 crystals are prepared via solution processable crystal engineering. The perovskite film, prepared by optimized pit spacing in gas pumped PbI2 film at 1000 Pa, shows the highest film quality, including no residual Pbl2 phase, compact morphology, and improved photoluminescence intensity. A transformation kinetics shows that the pit spacing strongly influences both the mass transfer and the sequential intercalation reaction between CH3NH31 and PbI2 crystals, which ultimately determines the full reaction state of the perovskite film. The perovskite solar cells assembled by the perovskite film show both high power-conversion efficiency and good reproducibility of photovoltaic performance due to the restrained charge recombination arising from the high quality perovskite film. To date, it is still a great challenge for highly efficient perovskite devices to realize the high quality per- ovskite films with high purity, high coverage ratio and good crystallization by two-step scalable solution method. In this study, a series PbI2 films with tunable micro-architecture of Pbl2 crystals are prepared via solution processable crystal engineering. The perovskite film, prepared by optimized pit spacing in gas pumped PbI2 film at 1000 Pa, shows the highest film quality, including no residual Pbl2 phase, compact morphology, and improved photoluminescence intensity. A transformation kinetics shows that the pit spacing strongly influences both the mass transfer and the sequential intercalation reaction between CH3NH31 and PbI2 crystals, which ultimately determines the full reaction state of the perovskite film. The perovskite solar cells assembled by the perovskite film show both high power-conversion efficiency and good reproducibility of photovoltaic performance due to the restrained charge recombination arising from the high quality perovskite film.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第8期1405-1411,共7页 材料科学技术(英文版)
基金 financial support from the National Program for Support of Top-notch Young Professionals
关键词 High phase purity CHHNH3PbI3 film Two-step solution method Perovskite solar cells High phase purity CHHNH3PbI3 film Two-step solution method Perovskite solar cells
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部