期刊文献+

Cr5Si3B and Hf5Si3B:New MAB phases with anisotropic electrical,mechanical properties and damage tolerance 被引量:1

Cr_5Si_3B and Hf_5Si_3B:New MAB phases with anisotropic electrical,mechanical properties and damage tolerance
原文传递
导出
摘要 Through a combination of electronic structure, chemical bonding and mechanical property investigations, anisotropic electrical and mechanical properties, and damage tolerant ability of MAB phases CrsSi3 B and HfsSi3B are predicted. The anisotropic electrical conductivity is due to the anisotropic distribution of Cr in CrsSiaB and Hf in HfsSi3B, which mainly contribute to the electrical conductivity. The anisotropic mechanical properties are underpinned by the anisotropic chemical bonding within the crystal structures of CrsSi3B and HfsSi3B. The high stiffness is determined by the strong covalent-ionic Crl--B--Crl and Crl--Si bonds in CrsSi3B and the ionic-covalent Hfl--B--Hfl and Si--B bonds in HfsSi3B; while the low shear deformation resistance is attributed to the presence of metallic Cr--Cr, Hf--Hf and Si--Si bond. Based on the low Pugh's ratio, CrsSi3B and Hfs Si3B are predicted tolerant to damage. The possible cleavage plane is (0001) and the possible slip systems are 〈1 100〉1{11 20} and 〈11 20〉1{0001} for both CrsSi3B and HfsSi3B. Through a combination of electronic structure, chemical bonding and mechanical property investigations, anisotropic electrical and mechanical properties, and damage tolerant ability of MAB phases CrsSi3 B and HfsSi3B are predicted. The anisotropic electrical conductivity is due to the anisotropic distribution of Cr in CrsSiaB and Hf in HfsSi3B, which mainly contribute to the electrical conductivity. The anisotropic mechanical properties are underpinned by the anisotropic chemical bonding within the crystal structures of CrsSi3B and HfsSi3B. The high stiffness is determined by the strong covalent-ionic Crl--B--Crl and Crl--Si bonds in CrsSi3B and the ionic-covalent Hfl--B--Hfl and Si--B bonds in HfsSi3B; while the low shear deformation resistance is attributed to the presence of metallic Cr--Cr, Hf--Hf and Si--Si bond. Based on the low Pugh's ratio, CrsSi3B and Hfs Si3B are predicted tolerant to damage. The possible cleavage plane is (0001) and the possible slip systems are 〈1 100〉1{11 20} and 〈11 20〉1{0001} for both CrsSi3B and HfsSi3B.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第8期1441-1448,共8页 材料科学技术(英文版)
基金 supported by the Natural Sciences Foundation of China under Grant No.51672064 and No.U1435206 Beijing Municipal Science&Technology Commission under Grant number Z151100003315012 and D161100002416001
关键词 MAB phases CrsSi3B and HfsSi3 BFirst-principles calculations Mechanical properties Chemical bonding MAB phases CrsSi3B and HfsSi3 BFirst-principles calculations Mechanical properties Chemical bonding
  • 相关文献

同被引文献6

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部