期刊文献+

两种工况下进气相对湿度对燃料电池性能影响的研究 被引量:5

Research for the inlet relative humidity effects on the performance of fuel cell with two working conditions
下载PDF
导出
摘要 为研究进气相对湿度对燃料电池在不同工况(工作温度为70℃,进气相对湿度为40%和100%)下的影响,提出了进气加湿效率(Inlet Humidification Efficiency,IHE)模型。该模型将燃料电池总的水含量分为两部分:外部进气加湿携带的水和内部电化学反应生成的水,由此推导出进气加湿效率公式。建立几何模型并划分计算网格,将进气加湿效率模型导入计算流体动力学软件(Fluent)中进行计算。建立燃料电池测试系统,对工作温度为70℃,进气相对湿度分别为40%和100%的工况进行了试验。对IHE模型、Fluent模型和试验值进行比较分析,结果表明:当电池工作温度为70℃,电流密度为350 m A/cm2,进气相对湿度为100%时,IHE模型精确度比Fluent模型提高了37.4%;当进气相对湿度为40%时,进气加湿效率为34%。 In order to study the inlet relative humidity(RH) effects on the performance of proton exchange membrane fuel cell(PEMFC)(70 ℃ operating temperature, 40%RH and 100%RH), an inlet humidification efficiency(IHE) model is proposed. The total water content of PEMFC in the IHE model is including two parts: the external water content of the humidified gas and the internal water content produced by electrochemical reaction. The calculation formula of inlet humidification efficiency is derived. The geometry model is established and the computational grids are partitioned. The IHE model is imported into the computational fluid dynamics software(Fluent)and calculated. The fuel cell experimental system is established and experiments had been done at the operating temperature of 70 ℃ and at 40% RH and 100% RH, respectively. The Fluent model,the IHE model and experimental are compared and analyzed. The results show that when the operating temperature is 70 ℃(100%RH and 350 m A/cm^2), the accuracy of IHE model is improved by 37.4% compared with the Fluent model. When the RH of PEMFC is 40%, the inlet humidification efficiency is 34%.
作者 樊磊 刘永峰 裴普成 姚圣卓 王方 Fan Lei;Liu Yongfeng;Pei Pucheng;Yao Shengzhuo;Wang Fang(Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles,School of Mechanical-electronic and Automobile Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;State Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,China)
出处 《可再生能源》 CAS 北大核心 2018年第8期1163-1167,共5页 Renewable Energy Resources
基金 汽车安全与节能国家重点实验室开放基金(KF1825) 北京建筑大学市属高校基本科研业务费专项资金(X18083) 北京建筑大学研究生创新项目(PG2018013) 国家重点研发计划(2017YFB0102705,2016YFB0101305) 国家自然科学基金(21676158) 北京市教委科技计划项目(KM201510016011)
关键词 质子交换膜燃料电池 进气相对湿度 进气携水量 计算流体动力学 PEMFC relative humidity water content of the humidified gas computational fluid dynamics
  • 相关文献

参考文献4

二级参考文献35

  • 1包成,欧阳明高,衣宝廉.Analysis of Water Management in Proton Exchange Membrane Fuel Cells[J].Tsinghua Science and Technology,2006,11(1):54-64. 被引量:1
  • 2张连洪,揭伟平,谢春刚,徐家福,宋海民.温度、压力和湿度对PEMFC堆电效率的影响[J].天津大学学报,2007,40(5):594-598. 被引量:20
  • 3Dutta S, Shimpalee S, Van Zee J W. Three-dimensional Numerical Simulation of Straight Channel PEM Fuel Cell [J]. Journal of Applied Electrochemistry, 2000, 30(2):135-146.
  • 4Janssen G J M. A Phenomenological Model of Water Transport in a Proton Exchange Membrane Fuel Cell [J]. Journal of Eleetrochem Soc, 2001 (148) : A1313-A1323.
  • 5Siegel N P, Ellis M W, Nelson D J, et al. A Two-dimensional Computational Model of a PEMFC with Liquid Water Transport [J]- Journal of Power Sources, 2004(128) :173-184.
  • 6Grujicic M, Chittajallu K M. Design and Optimization of Polymer Electrolyte Membrane (PEM) Fuel Cells[J]. Applied Surface Science, 2004(227) :56-72.
  • 7Serincan M F, Yesilyurt S. Transient Analysis of Proton Electrolyte Membrane Fuel Cells (PEMFC) at Start-up and Failure[J]. Fuel cells, 2007(2) :118-127.
  • 8Ou Shaoduan. Modeling and Optimization of PEM Fuel Cells[D]. Storrs:University of Connecticut, 2006.
  • 9Matamoros Luis, Bruggemann Dieter. Numerical Study on PEMFCs Geometrical Parameters Under Different Humidifying Conditions[J]. Journal of Power Sources, 2007 ( 172) : 258-264.
  • 10Gao Bin,Steenhuis, Tammo S, et al. Visualization of Unstable Water Flow in a Fuel Cell Gas Diffusion Layer[J]. Journal of Power Sources, 2009(190) :493-498.

共引文献26

同被引文献25

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部