期刊文献+

基于PNN的手势识别 被引量:7

Gesture recognition based on PNN
下载PDF
导出
摘要 为了实现人体手势姿态识别的目标,选用氯化银(Ag Cl)贴片电极作为信号传感端,通过采集前臂表面肌电(SEMG)信号,经信号放大、滤波等前期处理,再经活动段检测、降噪等信号处理后,提取伸食指、握拳、伸腕、屈腕4种手势的均方根值和积分EMG值作为特征向量,送入概率神经网络(PNN)中进行训练识别,实现人体手势识别。实验结果表明:PNN对前臂SEMG信号的模式识别的正确率可达到97.62%,将PNN应用于手势识别系统具有可行性。 In order to achieve the goal of gesture recognition,AgC1 patch electrude is used as signal sensing end. By collecting forearm surface electromyography(SEMG) signal, through signal amplification, filtering and other pre- processing,and by active segment detection, noise reduction and other signal processing, the root mean square values and integral EMG values of four kinds of gesture which are stretched forefinger, fist, wrist extension and wrist flcxion are extracted as eigenvector, and send to probabilistic neural network (PNN) for training and to realize the identification of gestures. The experimental results show that PNN can achieve accuracy of 97. 625 % for pattern recognition on forearm SEMG signals,and it is feasible to apply PNN to gesture recognition system.
作者 魏庆丽 肖玮 梁伟强 孙振超 张莉 WEI Qing-li;XIAO Wei;LIANG Wei-qiang;SUN Zhen-chao;ZHANG Li(College of Instrumentation and Electrical Engineering,Jilin University,Changchun 130061,China)
出处 《传感器与微系统》 CSCD 2018年第8期16-18,共3页 Transducer and Microsystem Technologies
基金 国家"十二五"科技支撑计划资助项目(2015BAI02B04) 吉林大学国家级大学生创新训练项目(2016A65291)
关键词 概率神经网络 表面肌电信号 手势识别 模式识别 probabilistic neural network ( PNN ) surface electromyography (SEMG) signal gesture recognition pattern recognition
  • 相关文献

参考文献6

二级参考文献70

  • 1王飞,罗志增.基于AR模型和BP网络的表面EMG信号模式分类[J].华中科技大学学报(自然科学版),2004,32(S1):100-102. 被引量:5
  • 2余小勇.信号分析从傅氏变换到小波变换[J].西安邮电学院学报,2001,6(1):64-66. 被引量:3
  • 3罗志增,王人成.基于表面肌电信号的前臂手部多运动模式识别[J].仪器仪表学报,2006,27(9):996-999. 被引量:18
  • 4高剑,罗志增.支持向量机在肌电信号模式识别中的应用[J].传感技术学报,2007,20(2):366-369. 被引量:11
  • 5CHUN S L T, PEI J, JOHN Q, et al. EMG based hands-free wheelchair control with EOG attention shift detection[C]. Proc 2007 IEEE International Conference on Robotics and Biomimetics. Piscataway: IEEE Press, 2008: 1266-1271.
  • 6LAI W, HUH SH, YUAN K. Use of forehead bio-signals for controlling an intelligent wheelchair[C]. Proc 2008 IEEE International Conference on Robotics and Biomimetics. Piscataway: IEEE Press, 2009: 108-113.
  • 7SONG Q J, LIV M, TONG L, et al. Extraction of elbow joint intention from semg signals in horizontal plane using cosine tuning functions[C]. Proc 2007 IEEE International Conference on Robotics and Biomimetics. Piscataway: IEEE Press, 2007. 2206-2211.
  • 8WELL H S H. EMG and visual based HMI for hands-free control of an intelligent wheelchair[C]. Proc of the 8th World Congress on Intelligent Control and Automation. Piscataway: IEEE Press, 2010:1027-1032.
  • 9小野定康 铃木纯司著 强增福译.JPEG2000技术[M].北京:科学出版社,2004..
  • 10王大凯,彭进业.小波分析及其在信号处理中的应用[M].北京:电子工业出版社,2005.

共引文献56

同被引文献57

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部