期刊文献+

潮流能转换装置串列双圆柱振子流致振动振幅响应研究

STUDY OF AMPLITUDE RESPONSE OF FLOW-INDUCED VIBRATION OF TANDEM DOUBLE-CYLINDERICAL OSCILLATORS IN TIDAL CURRENT ENERGY CONVERTER
下载PDF
导出
摘要 合理的排布方式可显著提高流致振动潮流能装置阵列的总体转换效率。针对串列双圆柱振子排布方式流致振动潮流能转换装置,利用ADINA软件对不同参变量下等直径串列双圆柱流致振动振幅响应进行数值模拟,得到不同间距、不同流速、不同雷诺数条件下,上下游圆柱振幅响应规律以及尾流模式和位移时程曲线。制作双振子潮流能装置模型,进行水槽试验,试验结果与数值结果的变化趋势基本吻合。结果表明,在振子间距2D的排布方式下,上下游振子振幅值最大且均大于单振子振幅。 The overall conversion efficiency of flow-induced vibration tidal energy device arrays with reasonable arrangement can be significantly improved.Aiming at flow-induced vibration tidal current energy conversion device with arrangement of tandem double-cylinder oscillators,ADINA software is used to carry out numerical simulation of amplitude response of flow-induced vibration with equal diameter tandem double-cylinder under different parameters,the amplitude response rules of up and down-stream cylinders,wake pattern and displacement time travel curves under different spacing,different flow rates and different Reynolds numbers are obtained.The two-oscillator tidal current energy converter model is manufactured and the experiment in flume is performed,the experiment results are in good agreement with the numerical results.The results show that the amplitudes of upstream and downstream oscillators reach maximum in the arrangement of the oscillators spacing 2 D,and both are greater than the amplitude of the single oscillator.
作者 王树杰 蔡云雯 袁鹏 谭俊哲 司先才 Wang Shujie;Cai Yunwen;Yuan Peng;Tan Junzhe;Si Xiancai(College of Engineering,Ocean University of China,Qingdao 266100,China;Ocean Engineering Key Lab of Qingdao,Qingdao 266100,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2018年第8期2183-2189,共7页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51176175 51479185)
关键词 流致振动 潮流能转换装置 串列双圆柱 圆柱振幅响应 flow-induced vibration tidal current energy converter tandem double cylinders amplitude response of cylinder
  • 相关文献

参考文献4

二级参考文献40

  • 1Bokaian A, Geoola F. Wake-induced galloping of two interfering circular cylinder [J]. Journal of Fluid Mechanics, 1984, 146: 383--415.
  • 2Rika D B, Laneville A. The flow interaction between a stationary cylinder and a downstream flexible cylinder [J]. Journal of Fluid and Structure, 1999, 13: 579--606.
  • 3Meneghini J R, Saltara F. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements [J]. Journal of Fluids and Structures, 2001, 15: 327--350.
  • 4Wu G X, Hu Z Z. Numerical simulation of viscous flow around unrestrained cylinders [J]. Journal of Fluids and Structures, 2006, 22:371 --390.
  • 5Williamson CHK, Govardhan R. Vortex-induced vibrations. Annu Rev Fluid Mech, 2004, 36:413~455
  • 6Griffin OM, Ramberg SE. The vortex-street wakes of vibrating cylinders. Journal of Fluid Mechanics, 1974, 66:553~576
  • 7Griffin OM, Koopman GH. The vortex-excited lift and reaction forces on resonantly vibrating cylinders. Journal of Sound and Vibration, 1977, 54:435~448
  • 8Griffin OM. Vortex-excited cross-flow vibrations of a single cylindrical tube. ASME Journal Pressure Vessel Technology, 1980, 102:158~166
  • 9Griffin OM, Ramberg SE. Some recent studies of vortex shedding with application to marine tubulars and risers.ASME Journal of Energy Resources Technology, 1982, 104:2~13
  • 10King R, Johns DJ. Wake interaction experiments with two flexible cylinders in flowing water. Journal of Sound and Vibration, 1976, 45:259~283

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部