期刊文献+

反应扩散模型数值解及生物斑图中的应用

Numerical Solution of Reaction-Diffusion Model and Applications on Biological Pattern Formation
下载PDF
导出
摘要 首先对反应扩散模型进行线性稳定性分析,然后利用Matlab、EXEL数值模拟得到相似于动物的各种斑图结构及和田地毯样式的图案。数值模拟发现:不同的区间和时间对斑图形成与形状有一定的影响,一般对确定空间尺度的群体而言在足够长的周期内生物群体在空间中表现出一定的空间有序斑图结构。 The stability of the reaction-diffusion model was analyzed,and various groups of organisms Pattern was got by using Matlab numerical model and EXEL numerical simulation. Numerical simulations indicate that different intervals and time pattern formation has certain effect on pattern formation and shape. Generally speaking,for the population that determines the spatial scale,the biological population shows a certain spatial ordered pattern structure in the space within a sufficiently long period.
作者 艾合麦提尼亚孜.艾合麦提江 开依沙尔.热合曼 Ahmetniyaz Ahmetjan;Kaysar Rahman(College of Mathematics and Information,Hotan Teachers College,Hotan 848000,China;College of Mathematics and System Sciences,Xinjiang University,Urumqi 830046,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第8期200-205,共6页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(11461069) 新疆大学博士启动基金资助项目(BS150204)
关键词 反应扩散模型 斑图动力学 Gray-Scott模型 Schnackenberg模型 reaction-diffusion model pattern dynamics Gray-Scott Model Schnackenberg model
  • 相关文献

参考文献1

二级参考文献27

  • 1Muratov C B, Osipov V V. Static spike autosolutions in the Gray-Scott model. J Phys A, Math Gen, 2000,33:8893-8916
  • 2Nicolis G. Patterns of spatio-temporal organization in chemical and biochemical kinetics. SIAM-AMS Proc,1974, 8:33-58
  • 3Peng R, Wang M X. Positive steady-state solutions of the Noyes-Field model for Belousov-Zhabotinskii reaction. Nonlinear Anal, TMA, 2004, 56:451-464
  • 4Peng R, Wang M X. Pattern formation in the Brusselator system. J Math Anal Appl, 2005, 309:151-166
  • 5Wang M X. Non-constant positive steady-states of the Sel'kov model. J Differ Equations, 2003, 190:600-420
  • 6Wu J H, Wolkowicz G. A system of resource-based growth models with two resources in the unstirred chemostat. J Differ Equations, 2001, 172:300-332
  • 7Chen W Y, Peng R. Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model. J Math Anal Appl, 2004, 291:550-564
  • 8Du Y H, Lou Y. Qualitative behavior of positive solutions of a predator-prey model: effects of saturation. Proc Roy Soc Edinburgh A, 2001, 131:321-349
  • 9Lou Y, Martinez S, Ni W M. On 3 × 3 Lotka-Volterra competition systems with cross-diffusion. Discrete Cont Dyn S, 2000, 6:175-190
  • 10Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion. J Differ Equations, 1996, 131:79-131

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部