摘要
应用概率论中的Lovasz一般局部引理得出了图的邻点强可区别V-全色数的上界,证明了对阶数不小于3且不含孤立边的简单图G的邻点强可区别V-全色数不超过49△,△≥5。
An upper bound for adjacent-vertex-strongly-distinguishing V-total chromatic numbers is obtained by Lovasz local lemma of probability method. We show that adjacent vertex strongly distinguishing V-total chromatic numbers of graph G is not more than 49△for△≥5, where G is a simple graph with no isolated edge and the order not less than three.
作者
蔡学鹏
任佰通
冯苗苗
CAI Xue-peng;REN Bai-tong;FENG Miao-miao(College of Mathematics and Physics,Xinjiang Agricultural University,Urumqi,Xinjiang 830052,China)
出处
《井冈山大学学报(自然科学版)》
2018年第3期5-8,共4页
Journal of Jinggangshan University (Natural Science)
关键词
Lovasz一般局部引理
邻点强可区别全染色
邻点强可区别V-全染色
Lovasz local lemma
the adjacent-vertex-strongly-distinguishing total coloring
the adjacent-vertex-strongly-distinguishing V-total coloring