期刊文献+

面向维修的装甲装备预防性器材需求预测 被引量:2

Maintenance Oriented Requirement Forecast for Armored Equipment Preventive Materials
原文传递
导出
摘要 将装甲装备器材需求分为预防性器材需求与修复性器材需求,以基层级保障机构年度预防性器材需求为研究对象,考虑保障机构历史年度预防性器材消耗、装备小修计划、维修范围与维修时机等,构建了面向维修的年度预防性器材需求预测模型,设计了基于遗传算法的OHF Elman(Output-Hidden Feedback Elman)神经网络求解算法,并通过算例和对比分析,验证了模型的合理性与适用性。 The requirement of armored equipment material is divided into the requirement for preventive material and repairable material. Taking the annual preventive material requirement of grassroots-level support unit as the research object, maintenance oriented forecasting model for the annual preventive material requirement is built in consideration of the annual preventive material consumption, the equipment minor repair plan, the maintenance scope and the time of maintenance. The algorithm of Output-Hidden Feedback Elman (OHF Elman) neural network based on genetic algorithms is designed to solve the model, and the rationality and applicability of the model are verified by examples and comparative analysis.
作者 李浩 王铁宁 贾琦 LI Hao;WANG Tie-ning;JIA Qi(Equipment Support and Remanufacturing Department,Army Academy of Armored Forces,Beijing 100072,China)
出处 《装甲兵工程学院学报》 2018年第2期36-41,共6页 Journal of Academy of Armored Force Engineering
基金 军队科研计划项目
关键词 装甲装备 基层级维修 年度预防性器材需求 遗传算法 OHF ELMAN神经网络 armored equipment grassroots-level maintenance annual preventive material requirement genetic algorithms OHF Elman neural network
  • 相关文献

参考文献6

二级参考文献60

共引文献89

同被引文献46

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部