期刊文献+

机载LiDAR点云体元化及其在3D滤波中的应用 被引量:8

Airborne LiDAR point cloud voxelization and its 3D filtering application
下载PDF
导出
摘要 相较于规则格网、不规则三角网和点云等数据结构,体元的优势在于其既是真3D结构同时又隐含有邻域关系。提出了一种二值(1和0)3D体元数据结构模型以重构机载Li DAR点云,在此模型基础上提出了一种基于体元的3D滤波算法。该算法首先选取高程最低目标体元作为地面种子体元,然后标记与其3D连通的"1值"体元集合为地面体元。采用ISPRS标准测试数据验证提出算法。结果的定量分析表明算法平均Kappa系数在相对平坦、不连续及陡坡地形分别为92.94%、60.43%和73.69%。 Compared to raster grid,triangulated irregular network and point cloud,the voxel is the true 3 D structure and can represent the implicity of neighborhood relationships. A binary( "1 "and "0 ") 3 D voxel-based data( B3 VD) structure model is proposed to reconstruct airborne Li DAR point cloud,and a voxel-based 3 D filtering( V3 F) is developed for separating ground voxels from nonground ones. The proposed V3 F algorithm selects the lowest voxels with value 1 as ground seeds and labels their 3 D connected voxel set as ground voxels. ISPRS benchmark dataset is utilized to evaluate the performance of V3 F and compared with other eight filtering methods. Results indicat that the average Kappa coefficients for sites with relatively flat urban areas,discontinuous and rough slope terrains are 92. 94%,60. 43% and 73. 69%,respectively.
作者 王丽英 徐艳 李玉 Wang Liying;Xu Yan;Li Yu(School of Geomatics,Liaoning Technical University,Fuxin 123000,China;Beijing Brisight Technology Company,Beijing 100094,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第7期173-182,共10页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(41471351) 辽宁省自然科学基金面上项目(20170540419)资助
关键词 体元 数据结构 滤波 数字高程模型 机载激光雷达 voxel data structure filtering digital elevation model airborne LiDAR
  • 相关文献

参考文献4

二级参考文献49

  • 1张小红.利用机载LIDAR双次回波高程之差分类激光脚点[J].测绘科学,2006,31(4):48-50. 被引量:40
  • 2李勇,吴华意.基于形态学梯度的机载激光扫描数据滤波方法[J].遥感学报,2008,12(4):633-639. 被引量:22
  • 3刘经南,张小红.利用激光强度信息分类激光扫描测高数据[J].武汉大学学报(信息科学版),2005,30(3):189-193. 被引量:65
  • 4程学武,宋娟,李发泉,戴阳,龚顺生.双波长高空探测激光雷达技术[J].中国激光,2006,33(5):601-606. 被引量:16
  • 5Sithole G, Vosselman G. Experimental Comparison of Filtering Algorithms for Bare-earth Extraction from Airborne I.aser Scanning Point Clouds[J]. IS- PRS Journal of Photogrammetry and Remote Sens ing, 2004, 59(1/2): 85-101.
  • 6Axelsson P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1999, 33 (B4/1) : 110-117.
  • 7Kraus K. Determination of Terrain Models in Wooded Areas with Airborne Laser Scanner Data [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53: 193-203.
  • 8Zhang K, Chen S, Whitman D, et al. A Progres sive Morphological Filter for Removing Non-Ground Measurements from Airborne LIDAR Data [ J]. IEEE Transactions on Geoscience and Remote Sens ing, 2003, 41(4): 872-882.
  • 9Vosselman G. Slope Based Filtering of Laser Altim- etry Data[J]. International Archives of the Photo- grammetry, Remote Sensing and Spatial Information Sciences, 2000, 33(B3): 935-942.
  • 10Chen Q, Gong P, Baldocchi D, et al. Filtering Air borne Laser Scanning Data with Morphological MethodsEJ]. Photogrammetric Engineering & Re- mote Sensing, 2007, 73 (2): 175-185.

共引文献68

同被引文献91

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部