期刊文献+

铝合金2219-O热拉伸流变行为研究 被引量:6

Thermal tensile rheological behavior of aluminum alloy 2219-O
下载PDF
导出
摘要 通过热拉伸实验,研究了在变形温度473-673 K、应变率0.001-0.1 s^(-1)条件下铝合金2219-O流变应力的变化规律,并建立材料本构关系。实验结果表明:在所研究的温度和应变率范围内,铝合金2219-O流变应力受到加工硬化和动态回复软化机制的综合影响,随着温度的升高,两种机制逐渐达到平衡状态。该材料属于正应变率敏感材料,流变应力随应变率的增加而增大,随温度的增加而降低。基于Hollomen模型,通过考虑应变、应变率和温度之间的耦合效应,建立了中高温下铝合金2219-O材料本构模型。流变应力的预测值与实验值对比表明该模型能够准确地反映铝合金2219-O热拉伸流变行为。 Thermal tensile tests were conducted to study the flow stress variation law of 2219-O sheet under the condition that the deformation temperature of 473-673 K and the strain rate of 0. 001-0. 1 s^(-1),and the constitutive relationship of the material was built. The experimental results show that the flow stress of 2219-O is affected by mechanical hardening mechanism and dynamic recovery softening mechanism in the studied temperature and strain rate range,and the two mechanisms approach to balance with the increase of temperature. The material is positive strain rate sensitive,and the flow stress increases with the increase of strain rate and decreases with the increase of temperature. Based on Hollomen model,a constitutive model for 2219-O under medium and high temperature was established considering the coupling effect of strain,strain rate and temperature. According to the comparison of the predicted flow stress values and experimental ones,the constitutive model can accurately reflect the thermal tensile rheological behavior of 2219-O.
作者 倪军 罗益民 甘甜 于忠奇 NI Jun;LUO Yi-min;GAN Tian;YU Zhong-qi(Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structure,Shanghai Jiao Tong University,Shanghai.200240,China;Shanghai Spaceflight Precision Machinery Institute,Shanghai 201600,China)
出处 《塑性工程学报》 CAS CSCD 北大核心 2018年第4期106-112,共7页 Journal of Plasticity Engineering
基金 国家自然科学基金资助项目(51675333) 科技部973课题资助项目(2014CB046601)
关键词 铝合金 热拉伸 流变应力 动态回复 本构模型 aluminum alloy thermal tension flow stress dynamic recovery constitutive model
  • 相关文献

参考文献3

二级参考文献27

  • 1陈扬,赵刚,刘春明,左良.6111铝合金在冷轧过程中织构的变化[J].东北大学学报(自然科学版),2006,27(1):41-44. 被引量:14
  • 2R A Schultz. Aluminum for light vehicles-an objective look at the next ten to twenty years[C]. 14th International Aluminum Conference, Montreal, Canada. 1999
  • 3G Palumbo, L Tricarico. Numerical and experimental investigations on the warm deep drawing process of circular aluminum alloy specimens[J]. Material Processing Technology. 2007. (184) : 115-123
  • 4Daoming Li, A K Ghosh. Tensile deformation behavior of aluminum alloys at warm forming tempera tures [J]. Materials Processing Technology, 2004. (145): 281-293
  • 5Daoming Li, A K Ghosh. Biaxial warm forming behavior of aluminum sheet alloys [J]. Materials Processing Technology, 2004. (145): 281-293
  • 6D M Finch, S P Wilson, Dorn. Deep Drawing Aluminum Alloy at Elevated Temperatures. Part Ⅰ[J]. Deep Drawing cylindrical cups. Transaction ASM, 1946. (36):254-289
  • 7D M Finch, S P Wilson, Dorn. Deep Drawing Aluminum Alloy at Elevated Temperatures. Part Ⅱ[J]. Deep Drawing Boxes. Transaction ASM. 1946.(36): 290-310
  • 8P J Bolt, et al. Feasibility of warm drawing of aluminum products [ J]. Material Processing Technolo- gy, 2001. (115): 118-121
  • 9R A Ayres, H W Lanning, B Taylor. Warming Forming the GM V-60id Pan in Aluminum [J]. SAE Paper 780180, Society of Automotive Engineers, 1978:02-706
  • 10A Aginagalde, et al. Warm hydroforming of lightweight metal sheet [J]. Materials processing and design: Moldeling, simulation and applications, 2007

共引文献40

同被引文献15

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部