期刊文献+

Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application

Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application
下载PDF
导出
摘要 Laser-induced breakdown spectroscopy has been recognized as a significant tool for element diagnostics in plasma–wall interaction. In this work, a one-dimensional numerical model is developed to simulate the laser ablation processes of a molybdenum(Mo) target in vacuum conditions. The thermal process of the interaction between the ns-pulse laser with wavelength of 1064 nm and the Mo target is described by the heat conduction equation. The plasma plume generation and expansion are described by Euler equations, in which the conservation of mass density, momentum and energy are included. Saha equations are used to describe the local thermal equilibrium of electrons, Mo atoms,Mo~+ and Mo^(2+) Plasma shielding and emission are all considered in this model. The mainly numerical results are divided into three parts, as listed below.Firstly, the rule of the plasma shielding effect varying with laser intensity is demonstrated quantitatively and fitted with the Nelder function. Secondly, the key parameters of plasma plume,such as the number density of species, the propagation velocity and the temperature, are all calculated in this model. The results indicate that the propagation velocity of the plume center increased with time in a general trend, however, one valley value appeared at about 20 ns due to the pressure gradient near the target surface leading to negative plasma velocity. Thirdly, the persistent lines of a Mo atom in the wavelength range from 300 nm to 600 nm are selected and the spectrum is calculated. Moreover, the temporal evolutions of Mo's spectral lines at wavelength of 550.6494 nm,553.3031 nm and 557.0444 nm are given and the results are compared with experimental data in this work. Laser-induced breakdown spectroscopy has been recognized as a significant tool for element diagnostics in plasma–wall interaction. In this work, a one-dimensional numerical model is developed to simulate the laser ablation processes of a molybdenum(Mo) target in vacuum conditions. The thermal process of the interaction between the ns-pulse laser with wavelength of 1064 nm and the Mo target is described by the heat conduction equation. The plasma plume generation and expansion are described by Euler equations, in which the conservation of mass density, momentum and energy are included. Saha equations are used to describe the local thermal equilibrium of electrons, Mo atoms,Mo~+ and Mo^(2+) Plasma shielding and emission are all considered in this model. The mainly numerical results are divided into three parts, as listed below.Firstly, the rule of the plasma shielding effect varying with laser intensity is demonstrated quantitatively and fitted with the Nelder function. Secondly, the key parameters of plasma plume,such as the number density of species, the propagation velocity and the temperature, are all calculated in this model. The results indicate that the propagation velocity of the plume center increased with time in a general trend, however, one valley value appeared at about 20 ns due to the pressure gradient near the target surface leading to negative plasma velocity. Thirdly, the persistent lines of a Mo atom in the wavelength range from 300 nm to 600 nm are selected and the spectrum is calculated. Moreover, the temporal evolutions of Mo's spectral lines at wavelength of 550.6494 nm,553.3031 nm and 557.0444 nm are given and the results are compared with experimental data in this work.
作者 Cailong FU Qi WANG Hongbin DING 付彩龙;王奇;丁洪斌(School of Physics, Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology)
机构地区 School of Physics
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第8期58-64,共7页 等离子体科学和技术(英文版)
基金 supported by National Magnetic Confinement Fusion Science Program of China (No.2013GB109005) National Natural Science Foundation of China (Nos.11475039,11605023)
关键词 LIBS ablation process molybdenum target numerical simulation LIBS ablation process molybdenum target numerical simulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部