摘要
神经嵴(neural crest,NC)是一种具有高度迁移能力的多功能细胞群,它形成于胚胎发育过程中神经上皮和上皮细胞前体之间的交界处。神经嵴细胞在经历了横贯整个胚胎的迁移之后,会固定下来并分化发育成多种组织和器官。神经嵴细胞在迁移过程中表现出趋化性(chemotaxis)和趋电性(electrotaxis)。神经嵴细胞能够沿着胞外可溶性因子浓度梯度产生定向迁移,这些趋化性因子包括SDF-1、VEGE、FGF、PDGF等;神经嵴细胞也能在生理电场(endogenous electric fields)或适当外源电场(exogenous electric fields)中沿电场方向,向正极或负极迁移。一些重要的与趋电性相关的分子已经被发现,如EGFR、Rac1、V-ATPase H+pump、PI3 kinase/Pten。本综述详细介绍了神经嵴细胞趋化性和趋电性迁移中的可能机理和实验证据,为后续研究提供参考。
Neural crest is a kind of multipotent cell population with high migration ability. It is formed at the interface between the neuroepithelium and the prospective epidermis during embryonic development. After the migration across the entire embryo, the neural crest cells were fixed and differentiated into a variety of tissues and organs. And the neural crest cells showed chemotaxis and electrotaxis during the migration. Neural crest cells could make directional migration along the extracellular concentration gradients of soluble factors. These chemotaxis factors included SDF-1, VEGE, FGF, and PDGF. Neural crest cells could directionally migrate toward either anode or cathode in endogenous electric fields or exogenous electric fields. And several critical molecules related to electrotaxis havex been discovered, including EGFR, Rac1, V-ATPase H+pump, and PI3 kinase/Pten.This review introduced the possible mechanisms and experimental evidence for chemotaxis and eletrotaxis during neural crest cell migration in detail, which might provide references for the follow-up study.
作者
蒋锐达
赵敏
赵三军
施利民
高润池
王晓燕
Jiang Ruida;Zhao Min;Zhao Sanjun;Shi Limin;Gao Runchi;Wang Xiaoyan(School of Life Sciences,Yunnan Normal University,Kunming,650500;School of Medicine,University of California at Davis,California,95616;Engineering Research Center of Sustainable Development and Utilization of Biomass Energy,Ministry of Education,Kunming,650500)
出处
《基因组学与应用生物学》
CAS
CSCD
北大核心
2018年第9期3799-3809,共11页
Genomics and Applied Biology
基金
国家重点基础研究发展计划(2012CB518100)
国家自然科学基金-云南省联合基金(U1132603)
生物能源持续利用与开发教育部工程中心开放基金共同资助
关键词
神经嵴
细胞迁移
趋化性
趋电性
Neural crest
Cell migration
Chemotaxis
Electrotaxis