期刊文献+

基于脑电信号的博弈决策预测方法研究 被引量:1

Study of prediction method based on decision EEG Game
下载PDF
导出
摘要 博弈认知状态由于其严密的逻辑性和数学框架,是脑机接口的新兴领域。近年来受到数学家、心理学家和计算机学者广泛的关注,并且已经取得一定的研究成果。首先,本文设计了具有典型博弈活动的"石头-剪刀-布"认知状态研究实验。接着对博弈活动进行了阶段性的划分。然后,采集了17个被试的脑电数据,接着对采集到的脑电数据进行:(1)脑电预览;(2)伪迹剔除与矫正;(3)数字滤波;(4)转参考;(5)Double-ICA去伪迹;(6)脑电分段;(7)基线矫正等离线预处理操作。在此基础上,分别从统计学特征、时域特征和频域特征3个方面对被试出石头、剪刀、布3种情况下的脑电信号进行特征提取,使用基于关联的特征选择方法进行特征选择。最后使用SVM分类器进行分类识别,其中SVM的核函数采用线性核函数,达到了83.3%的识别率。 Game cognitive state,due to its rigorous logic and mathematical framework,is an emerging field of brain-computer interface. In recent years,it has drawn much attention from mathematicians,psychologists and computer scholars,and has achieved some research results. At first,this paper designs a cognitive state research experiment "stone-scissors-cloth",which is a typical game. Secondly,the paper divides the game into different stages. Then,the paper collects 17 subjects of EEG data,and with these EEG data,respectively performs the following steps:( 1) electrical preview;( 2) artifact correction;( 3) filter;( 4) reference;( 5)Double-ICA artifact correction;( 6) epoch;( 7) baseline correct offline preprocessing operations. On this basis,the paper extracts the features of EEG from stone,scissor and cloth in terms of statistics,time domain and frequency domain; next,selects features by using feature selection method based on correlation. Finally,the research uses the SVMclassifier for classification recognition,with linear kernel function as the SVMkernel function,and the recognition rate reaches 83.3%.
作者 刘新磊 李海峰 马琳 LIU Xinlei;LI Haifeng;MA Lin(School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001,China)
出处 《智能计算机与应用》 2018年第5期75-78,82,共5页 Intelligent Computer and Applications
基金 国家自然科学基金(61171186)
关键词 博弈 统计特征 功率谱 留一法 game the statistical characteristics power spectrum leave-one-out method
  • 引文网络
  • 相关文献

参考文献1

二级参考文献7

  • 1Bykova M, Ostermann S, Tjaden B. Detecting Network Intrusions via a Statistical Analysis of Network Packet Characteristics[C]//Proc of the 33rd Southeastern Symp on System Theory, 2001.
  • 2Sun N Q, Li Y. Intrusion Detection Based on Back-Propagation Neural Network and Feature Selection Mechanism[C] //Proc of FGIT'09,2009 : 151-159.
  • 3Yu L, Liu H. Efficient Feature Selection via Analysis of Relevance and Redundancy[J]. Journal of Machine Learning Research, 2004(5) : 1205-1224.
  • 4Liu H, Yu L. Towards Integrating Feature Selection Algorithms for Classification and Clustering[J]. IEEE Trans on Knowledge and Data Engineering, 2005,17 (3) : 1-12.
  • 5Forres S, Perelson A S, Allen L, et al. Self-Nonself Discrimination in a Computer[C]//Proc of the 1994 IEEE Symp on Research in Security and Privacy, 1994:120-128.
  • 6MARK A H. Correlation-Based Feature Selection for Discrete and Numeric Class Machine Learning[C]//Proc of the 17th Int'l Conf on Machine Learning,2000:359-366.
  • 7Knowledge Discovery in Databases DARPA Archive [EB/ OL]. [-2009-05-16]. http://www, kdd. ics. uci. edu/databases/kddcup99/task, html.

共引文献15

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部