摘要
在紧半群条件下,讨论具有非局部条件的脉冲算子微分包含解的存在性.利用集值映射不动点定理,在非线性项和非局部项不具有紧性和Lipschitz连续性的框架下研究这一问题,所需的条件更为一般化,得到的结果改进了已有文献中的结论.
This paper is concerned with the existence of solutions to impulsive differential inclusions under compact semigroups. By using the fixed point theorem for multi-valued mappings, we discuss the problem under the assumption that the nonlinear item and nonlocal item are not compact and not Lipschitz continuous. The obtained results extend some existing ones and the conditions are more general.
作者
嵇绍春
JI Shao-chun(Faculty of Mathematics and Physics,Huaiyin Institute of Technology,Huaian 223003,China)
出处
《数学的实践与认识》
北大核心
2018年第16期234-239,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(11601178)
江苏省自然科学基金(BK20150415)
江苏高校“青蓝工程”资助
关键词
微分包含
脉冲条件
存在性
非局部条件
differential inclusions
impulsive conditions
existence
nonlocal conditions.