摘要
本文利用变量变换法与常数变易法给出Riccati型方程f'(y)dy/dx=P(x)f^2(y)+Q(x)f(y)+R(x)e^(∫Q(x)dx)的一个新的可积条件∫P(x)e^(∫Q(x)dx)dx=-1/2∫R(x)dx,同时给出该条件下方程的通解,并由此推得若干类Riccati方程的通解.
Using the change of variable and the variation of constant,this paper gives a new condition of integrability f'(y)dy/dx=P(x)f^2(y)+Q(x)f(y)+R(x)e^∫Q(x)dx,for the equation of Riccati type f'(y)dy/dx=P(x)f-2(y)+Q(x)f(y)+R(x)e^∫Q(x)dx,and the general solution of the equation under the condition.Based on the approach,general solutions of several kinds of Riccati equations are also formulated.
作者
陈友朋
王英吉
罗思佳
CHEN Youpeng;WANG Yingji;and LUO Sijia(Mathematical School,Yancheng Normal Institute,Yancheng 224002,China)
出处
《高等数学研究》
2018年第4期15-18,共4页
Studies in College Mathematics
基金
江苏高校品牌专业建设工程资助项目(PPZY2015C211)
盐城师范学院大学生实践创新项目
关键词
RICCATI型方程
可积条件
通解
Riccati equation
condition of integrability
general solution