期刊文献+

COX-2抑制剂的定量构效关系研究 被引量:1

Quantitative Structure-activity Relationship Study of COX-2 Inhibitors
下载PDF
导出
摘要 选择性抑制环氧酶-2可以达到消炎镇痛的目的。本文应用支持向量回归机、k最近邻以及C4.5决策树三种机器学习方法建立了COX-2抑制剂的回归模型,分析其定量构效关系。本文又对三个模型的预测效果进行了评价,误差均能满足精度要求。最后,本文比较了它们的优缺点和适用范围。 Selective inhibition of cyclooxygenase-2(COX-2) can reduce inflammation and pain. In this work, three machine learning methods(support vector regression, k-nearest neighbor and C4.5 decision tree) were applied to establish the regression models of COX-2 inhibitors and analyze the quantitative structure-activity relationship. The predictive effects of the three models were also evaluated, all showing low forecast errors. Finally, their advantages, disadvantages and the range of their applications were compared.
作者 李秉轲 刘杰 刘军 赵庆昊 马艺飞 Li Bingke;Liu Jie;Liu Jun;Zhao Qinghao;Ma Yifei(College of Chemistry and Life Science / Institute of Functional Molecules,Chengdu Normal University,Chengdu 611130,China)
出处 《广东化工》 CAS 2018年第15期62-63,53,共3页 Guangdong Chemical Industry
基金 2017年国家级大学生创新创业训练计划项目(201714389021 机器学习方法在抗肿瘤BRD4靶点抑制剂的筛选 设计与合成中的应用研究)资助 四川省教育厅自然科学重点项目(16ZA0369 机器学习方法在CDK4/6酶抑制剂抗肿瘤研究中的应用)资助
关键词 支持向量回归机 k最近邻 C4.5决策树 COX-2抑制剂 定量构效关系 support vector regression k-nearest neighbor C4.5 decision tree COX-2 inhibitors quantitative structure-activity relationship
  • 相关文献

参考文献3

二级参考文献45

  • 1李盼池,许少华.基于三次样条函数拟合的过程神经元网络训练[J].计算机工程与设计,2005,26(4):1081-1082. 被引量:4
  • 2包健,赵建勇,周华英.基于BP网络曲线拟合方法的研究[J].计算机工程与设计,2005,26(7):1840-1841. 被引量:21
  • 3Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:Class discovery and class prediction by gene expression[J].Science,1999,286(5439):531.
  • 4Van't Veer L J,Dai H,Van de Vijver M J,et al.Gene expression profiling predicts clinical outcome of breast cancer[J].Nature,2002,415(6871):530.
  • 5Pomeroy S L,Tamayo P,Gaasenbeek M,et al.Prediction of central nervous system embryonal tumour outcome based on gene expression[J].Nature,2002,415(6870):436-442.
  • 6Alizadeh A A,Eisen M B,Davis R E,et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J].Nature,2000,403:503-511.
  • 7Valafar F.Pattern recognition techniques in microarray data analysis a survey[J].Annals of the New York Academy of Sciences,2002,980(1):41-64.
  • 8Brown Grundy W N,Lin D,Cristianini N,et al.Knowledge-based analysis of microarray gene expression data by using support vector machines[J].Proceedings of the National Academy of Sciences,2000,97(1).
  • 9Shipp M A,Ross K N,Tamayo P,et al.Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning[J].Nature Medicine,2002,8(1):68-74.
  • 10Bhattacharjee A,Richards W G,Staunton J,et al.Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses[C]// Proceedings of the National Academy of Sciences,2005, 21(15):3301-3307.

共引文献45

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部