摘要
选择性抑制环氧酶-2可以达到消炎镇痛的目的。本文应用支持向量回归机、k最近邻以及C4.5决策树三种机器学习方法建立了COX-2抑制剂的回归模型,分析其定量构效关系。本文又对三个模型的预测效果进行了评价,误差均能满足精度要求。最后,本文比较了它们的优缺点和适用范围。
Selective inhibition of cyclooxygenase-2(COX-2) can reduce inflammation and pain. In this work, three machine learning methods(support vector regression, k-nearest neighbor and C4.5 decision tree) were applied to establish the regression models of COX-2 inhibitors and analyze the quantitative structure-activity relationship. The predictive effects of the three models were also evaluated, all showing low forecast errors. Finally, their advantages, disadvantages and the range of their applications were compared.
作者
李秉轲
刘杰
刘军
赵庆昊
马艺飞
Li Bingke;Liu Jie;Liu Jun;Zhao Qinghao;Ma Yifei(College of Chemistry and Life Science / Institute of Functional Molecules,Chengdu Normal University,Chengdu 611130,China)
出处
《广东化工》
CAS
2018年第15期62-63,53,共3页
Guangdong Chemical Industry
基金
2017年国家级大学生创新创业训练计划项目(201714389021
机器学习方法在抗肿瘤BRD4靶点抑制剂的筛选
设计与合成中的应用研究)资助
四川省教育厅自然科学重点项目(16ZA0369
机器学习方法在CDK4/6酶抑制剂抗肿瘤研究中的应用)资助
关键词
支持向量回归机
k最近邻
C4.5决策树
COX-2抑制剂
定量构效关系
support vector regression
k-nearest neighbor
C4.5 decision tree
COX-2 inhibitors
quantitative structure-activity relationship