摘要
为了改善传统协同过滤推荐算法的冷启动与数据稀疏问题,基于概率矩阵分解模型,将用户属性、物品关系与时序行为融合到模型中,通过不断调整3种模型所占权重,得到最小的RMSE值。在Movielens数据集上进行实验,并与其它相关算法的RMSE值进行比较。实验结果表明,结合多信息的概率矩阵分解模型的RMSE值低于其它推荐方法,即推荐精度优于其它方法。结合多信息的概率矩阵分解模型,在数据稀疏情况下,也能保持较好的推荐性能,推荐精度得到一定程度提升。
In order to improve the cold start and data sparsity of the traditional collaborative filtering recommendation algorithm,user attributes,item relationship and sequential behavior are merged into probabilistic matrix factorization model,and the minimum RMSE value is obtained by constantly adjusting the weight of the three models.Experiments on the Movielens data set are compared with the RMSE values of other related algorithms.The experimental results show that the RMSE value of the probability matrix factorization model with multiple information is lower than other recommended methods,and recommendation accuracy is better than the other methods.The probability matrix factorization model combined with multi information can also maintain better recommendation performance in the case of data sparsity,and the accuracy of recommendation is improved.
作者
古来
黄俊
张若凡
古智星
许二敏
GU Lai;HUANG Jun;ZHANG Ruo-fan;GU Zhi-xing;XU Er-min(School of Telecommunications and Information Engineering,Chongqing University of Posts and Telecommunication,Chongqing 400065,China)
出处
《软件导刊》
2018年第9期67-71,共5页
Software Guide
关键词
协同过滤
用户属性
物品关系
时序行为
PMF
collaborative filtering
user attributes
items relationship
sequential behaviors
PMF