期刊文献+

结合多信息的概率矩阵分解模型 被引量:3

Probability Matrix Factorization Model Combined with Multiple Information
下载PDF
导出
摘要 为了改善传统协同过滤推荐算法的冷启动与数据稀疏问题,基于概率矩阵分解模型,将用户属性、物品关系与时序行为融合到模型中,通过不断调整3种模型所占权重,得到最小的RMSE值。在Movielens数据集上进行实验,并与其它相关算法的RMSE值进行比较。实验结果表明,结合多信息的概率矩阵分解模型的RMSE值低于其它推荐方法,即推荐精度优于其它方法。结合多信息的概率矩阵分解模型,在数据稀疏情况下,也能保持较好的推荐性能,推荐精度得到一定程度提升。 In order to improve the cold start and data sparsity of the traditional collaborative filtering recommendation algorithm,user attributes,item relationship and sequential behavior are merged into probabilistic matrix factorization model,and the minimum RMSE value is obtained by constantly adjusting the weight of the three models.Experiments on the Movielens data set are compared with the RMSE values of other related algorithms.The experimental results show that the RMSE value of the probability matrix factorization model with multiple information is lower than other recommended methods,and recommendation accuracy is better than the other methods.The probability matrix factorization model combined with multi information can also maintain better recommendation performance in the case of data sparsity,and the accuracy of recommendation is improved.
作者 古来 黄俊 张若凡 古智星 许二敏 GU Lai;HUANG Jun;ZHANG Ruo-fan;GU Zhi-xing;XU Er-min(School of Telecommunications and Information Engineering,Chongqing University of Posts and Telecommunication,Chongqing 400065,China)
出处 《软件导刊》 2018年第9期67-71,共5页 Software Guide
关键词 协同过滤 用户属性 物品关系 时序行为 PMF collaborative filtering user attributes items relationship sequential behaviors PMF
  • 相关文献

参考文献3

二级参考文献31

  • 1余力,刘鲁,罗掌华.我国电子商务推荐策略的比较分析[J].系统工程理论与实践,2004,24(8):96-101. 被引量:45
  • 2Herlocker J L,Konstan J A,Borehers A,et al.An algorithmic framework for performing collaborative filtering[C]//Proceedings of ACM SIGIR'99.[S.l.]:ACM Press, 1999:230-237.
  • 3Sarwar B,Karypis G.Application of dimensionality reduction in recommender system : A case study[C]//ACM WebKDD Workshop, 2000:114-121.
  • 4Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive alogrithms for collaborative fihering[C]//Proceedings of UAI'98,1998: 43-52.
  • 5Deerwester S,Dumais S T,Fumas G W,et al.Indexing by latent semantic analysis[J].Journal of the American Society for Information Science, 1999 : 102-106.
  • 6Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms [C]//Proceedings of the Tenth International World Wide Web Conference on World Wide Web,2001: 230-270.
  • 7Schafer J B,Konstan J A,Riedl J.E-commerce recommendation ap- plications[J].Data Mining and Knowledge Discovery, 2001,5 (122) : 115-120.
  • 8Herlocker J L,Konstan J A,Terveen,et al.Evaluating collaborative filtering recommender systems[J].ACM Trans on Information Systems, 2004,22( 1 ) :5-53.
  • 9Sarwar B,Karypis G, Konstan J,et al. Item-based collaborative filtering recommendation algorithms[C]. In Proceedings of ACM WWW,2001:285-295.
  • 10Wang Di, Ma Jun, Lian Tao, et al. Recommendation based on weighted social trusts and item relationships[C]. Symposium on Applied Computing (SACfH),2014,March 24-28.

共引文献20

同被引文献20

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部