摘要
随着无线传感器在环境监测、医疗、军事等领域的广泛应用,无线传感器故障检测成为重中之重。现有无线传感故障诊断基于无线传感器传感数据的时空相关性进行,当无线传感器分布密集且故障较少时,能达到很好的诊断精度。提出一种基于距离加权的算法,将邻居节点的数据加权平均后与待检测点进行比较,提高了故障诊断的精度,且能对具有正常诊断的节点状态进行扩散,减少能量消耗,延长网络寿命。
With the extensive application of wireless sensors in environmental monitoring,medical treatment and military,fault detection in wireless sensor becomes more and more important.The existing wireless sensor fault diagnosis is based on spatio-temporal correlation of wireless sensor sensing data,and when the wireless sensor is densely distributed and the number of faults is small,good diagnostic accuracy can be achieved.In this paper,a distance-weighted algorithm is proposed.The data of neighboring nodes are weighted averagely and compared with the test points for diagnosis.The diagnostic accuracy of the fault is improved,and the state of the node with normal diagnosis is diffused to reduce the energy consumption and extend network life.
作者
刘志光
LIU Zhi-guang(Fujian Institute of Scientific and Technological Information;Key Laboratory of Fujian Information Network,Fuzhou 350003,China)
出处
《软件导刊》
2018年第9期106-109,共4页
Software Guide
基金
福建省科技计划项目(2016R1008-4)
关键词
无线传感器
故障诊断
时空相关性
距离加权
wireless sensor networks
fault detection
spatio-temporal correlation
distance weighted