期刊文献+

基于EFAST的在线极限学习机节点剪枝方法 被引量:1

A Online Extreme Learning Machine Node Pruning Method Based on EFAST
下载PDF
导出
摘要 针对在线极限学习机(OS-ELM)的隐藏层网络结构优化问题,设计了一种能自适应调整网络结构的在线极限学习方法(FOS-ELM)。该方法首先利用扩展的傅里叶振幅敏感度测试(EFAST),对OS-ELM中的各个隐藏层节点敏感度进行分析,再通过移除低敏感的隐藏层节点,从而达到对OS-ELM的网络结构进行优化的目的。从实验结果中分析,相比标准的OS-ELM,CEOS-ELM和HOS-ELM,在保证泛化精度的条件下,通过本文训练方法所需的隐藏层节点数均少于这3种方法。 In order to optimize the hidden layer structure of the extreme learning machine(OS-ELM), this paper designs an adaptive method to adjust the structure of the OS-ELM network(FOS-ELM). We employ the extended fourier amplitude sensitivity test(EFAST) method to analyze the sensitivity of nodes in hidden layer. by removing the lower sensitivity nodes, we will achieve a simplified OS-ELM structure. And then a recursive least square algorithm is designed to adjusted the parameters in the output layer. In this way, the structure of OS-ELM can be optimized. In experiment, we compared our method to the standard OS-ELM, CEOS-ELM, and HOS-ELM, it proved that our method performed better than these state-of-art methods.
作者 丁王斌 魏少涵 张碧仙 DING Wang-bin;WEI Shao-han;ZHANG Bi-xian(Fuzhou Institute of Technology,Fuzhou350002,China)
机构地区 福州理工学院
出处 《三明学院学报》 2018年第4期55-59,共5页 Journal of Sanming University
基金 福建省中青年教师教育科研项目(JAT170796)
关键词 在线极限学习机 迭代最小二乘法 扩展的傅里叶振幅敏感度测试 extreme learning machine recursive least square EFAST
  • 相关文献

参考文献1

二级参考文献17

  • 1文成林,吕冰,葛泉波.一种基于分步式滤波的数据融合算法[J].电子学报,2004,32(8):1264-1267. 被引量:31
  • 2Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
  • 3Lendasse A, He Q, Miche Y, et al. Advances in extreme learning machines(ELM2012)[J]. Neurocomputing, 2014, 128(5): 1-3.
  • 4Sun Z L, Wang H, Lau W S. Application of BW-ELM model on traffic sign recognition[J]. Neurocomputing, 2013, 128(5): 153-159.
  • 5Yuan X, Chen Y J, Zhu Q X. An extension sample classification-based extreme learning machine ensemble method for process fault diagnosis[J]. Chemical Engineering & Technology, 2014, 37(6): 911-918.
  • 6Alexander G, Yoan M, Anne-Mari V, et al. Long-term time series prediction using OP-ELM[J]. Neural Networks, 2014, 51(3): 50-56.
  • 7Jose M, Martinez M, Pablo E M, et al. Regularized extreme learning machine for regression problems[J]. Neurocomputing, 2011, 74(17): 3716-3721.
  • 8Fan Y T, Wu W, Yang W Y, et al. A pruning algorithm with ??1/2 regularizer for extreme learning machine[J]. J of Zhejiang University: Science C — Computer & Electronics, 2014, 15(2): 119-125.
  • 9Han H G, Qiao J F. A structure optimization algorithm for feedforward neural network construction[J]. Neurocomputing, 2013, 99(1): 347-357.
  • 10Yoan M, Antti S, Patrick B, et al. OP-ELM: Optimally pruned extreme learning machine[J]. IEEE Trans on Neural Networks, 2010, 21(1): 158-162.

共引文献6

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部