期刊文献+

基于IQPSO优化SVM在径流预报中的应用 被引量:11

Application of IQPSO optimized SVM in runoff forecasting
下载PDF
导出
摘要 提高径流预报精度的关键因素是选取合适的预报模型和预报因子。选择支持向量机作为径流预报模型,针对支持向量机模型参数在应用中存在选取困难的缺点,在标准量子粒子群算法中加入早熟判定准则、高斯扰动和自适应权重,提出改进量子粒子群算法(IQPSO),并使用该算法实现支持向量机参数的自动优选。为了验证效果,分别采用PSO-SVM、QPSO-SVM和径向基神经网络模型预报作对比,并使用多种评价指标进行对比分析。结果表明,使用改进量子粒子群算法优化支持向量机(IQPSO-SVM)模型能够有效提高月径流预报精度。 The key factor to improve the accuracy of runoff forecasting is to select the appropriate forecast model and forecast factor. Selecting support vector machine( SVM) as the runoff forecasting model to overcome the shortcomings of the selection of support vector machine( SVM) model parameters in the application,we introduce the precocious decision criterion,the Gaussian perturbation and the adaptive weight to the standard quantum particle swarm optimization algorithm.( QPSO),and use this algorithm to realize the automatic optimization of SVM parameters. In order to validate the results,PSO-SVM,QPSOSVM and RBF neural network model were used respectively to compare and forecast,and a variety of evaluation indexes were used for comparative analysis. The results show that using improved quantum particle swarm optimization to optimize support vector machine( IQPSO-SVM) model can effectively improve the accuracy of monthly runoff forecasting.
作者 李文敬 李沛武 LI Wenjing;LI Peiwu(School of Information Engineering,Nanchang Institute of Technology,Nanchang 330099,China;Key Laboratory of Water Information Synergetic Sensing and Intelligent Processing,Nanchang 330099,China)
出处 《南昌工程学院学报》 CAS 2018年第3期54-59,90,共7页 Journal of Nanchang Institute of Technology
基金 南昌工程学院研究生创新基金课题(YJSCX20170024) 南昌工程学院大学生创新创业训练计划项目(2017011)
关键词 径流预报 参数选择 支持向量机 量子粒子群 混合核函数 runoff forecasting parameter selection support vector machine quantum particle swarm mixed kernel function
  • 相关文献

参考文献12

二级参考文献140

共引文献278

同被引文献109

引证文献11

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部