期刊文献+

基于深度主动学习的磁片表面缺陷检测 被引量:18

Deep Active Learning in Detection of Surface Defects on Magnetic Sheet
下载PDF
导出
摘要 磁片表面缺陷的检测一直是磁片厂流水线生产中提高生产效率、降低生产成本的重要环节;当前多种机器视觉检测方法已经被应用,这些方法都是采取人工提取缺陷特征,但由于磁片表面对比度低,磨痕纹理干扰和缺陷块小且亮度变化大等难点,导致准确度不高、通用性不强;另外在实际生产中巨大数据量获取容易,而人工标注成本高;为此提出一种基于深度主动学习的磁片表面缺陷检测方法可以解决以上两个问题;该方法首先,结合边缘检测和模板匹配算法将磁片前景和背景进行分割;其次,使用Inception-Resnet-v2深度神经网络对样本进行训练,完成对缺陷图像的识别;最后,在深度学习过程中,提出一种主动学习的方法来克服数据集庞大但标注成本高的难点;实验结果表明,该方法的缺陷检测识别率达到了96.7%,并且最多能节省25%的人力标注成本。 The detection of the surface defects on magnetic sheet has played an important role in the production efficiency and the cost of production in the production line of the magnetic sheet factory.A variety of machine vision methods has been applied,they are taken to extract features of artificial defects,but because the disk surface has low contrast,wear texture interference and small changes in the brightness and other difficulties,they lead to less accuracy and versatility;in addition,it's easy to obtain the huge data in the actual production,but manual annotation has the high cost;this paper propose a deep active learning method of disk surface defect to solve the above two problems;firstly,the template matching algorithm with edge detection will segment the disk foreground and background;secondly,the samples are trained using Inception-Resnet-v2 deep neural network,completing the identification of defect image;finally,in the deep learning process,proposes an active learning method to overcome the large data set but the annotation cost high.The experimental results show that the detection recognition rate of the proposed method reaches 96.7%and can save up to 25% of the cost of human annotation.
作者 姚明海 陈志浩 Yao Minghai, Chen Zhihao(College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, Chin)
出处 《计算机测量与控制》 2018年第9期29-33,共5页 Computer Measurement &Control
基金 浙江省自然科学基金项目(LZ14F030001)
关键词 卷积神经网络 主动学习 缺陷检测 convolutional neural network active learning defect detection
  • 相关文献

参考文献3

二级参考文献33

  • 1凌云峰,朱齐丹,吴自新,张智.全景视觉图像柱面理论展开算法实现及其改进[J].应用科技,2006,33(9):4-6. 被引量:13
  • 2Settles B. Active Learning Literature Survey, Computer Science Technical Report 1648, University of Wisconsin- Madison, USA, 2009. 3-4.
  • 3Dasgupta S. Coarse sample complexity bounds for active learning. Advances in Neural Information Processing Sys- tems. Cambridge: The MIT Press, 2006. 235-242.
  • 4Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM Inter- national Conference on Multimedia. New York, USA: ACM, 2001. 107-118.
  • 5Tong S, Koller D. Support vector machine active learning with applications to text classification. The Journal of Ma- chine Learning Research, 2002, 2:45-66.
  • 6Seung H S, Opper M, Sompolinsky H. Query by commit- tee. In: Proceedings of the 5th Annual Workshop on Com- putational Learning Theory. New York, USA: ACM, 1992. 287-294.
  • 7Dagan I, Engelson S P. Committee-based sampling for train- ing probabilistic classifiers. In: Proceedings of the 12th International Conference on Machine Learning. California, USA: Morgan Kaufmann, 1995. 150-157.
  • 8Hoi S C H, Jin R, Lyu M R. Batch mode active learning with applications to text categorization and image retrieval. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1233-1248.
  • 9Joshi A J, Porikli F, Papanikolopoulos N. Multi-class ac- tive learning for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition. Miami, USA: IEEE, 2009. 2372-2379.
  • 10Zhu X J. Semi-supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison. USA. 2008. 11-13.

共引文献97

同被引文献122

引证文献18

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部