摘要
非侵入式负荷识别可以实现深入分析用户内部负荷成分,获取用户的负荷信息,完善用电信息采集系统与智能用电系统,支撑起双向互动服务和智能用电服务。从抑制噪声信号,精确提取电器的电气特性信号的方面,提出了采用小波变换对电流数据进行去噪的方法,通过理论分析和实验验证,均证明"coif1"具有良好效果,既能有效地抑制噪声信号又能完整地保存有效信号成份,在事件检测中,准确地提取出电器的电流波形信号,为非侵入式负荷识别研究提供了参考。
Non-invasive load identification can be carried out in-depth analysis of the user' s internal load components, and access to the user' s load information, improve the electricity information collection system and intelligent power system, and support from the two-way interactive services and intelligent electricity services. From the aspect of denosing and accurately extracting the electrical characteristic signal of the electrical appliance, a method of denoising the collected current data by wavelet transform is proposed. Through the theoretical analysis and experimental verification, it is proved that “eoifl” has good effect, which can effectively suppress the noise signal and completely preserve the effective signal components, in event detection, accurately extract the current waveform of the appliance and load recognition, and provided a reference for the study of the non-invasive load identification.
作者
陈柯豪
王燕祥
宣磊
沈国富
刘明
CHEN Kehao;WANG Yanxiang;XUAN Lei;SHEN Guofu;LIU Ming(Kunming Power Supply Bureau,Yunnan Power Grid Company with Limited Liability,Kunming 650118;Yunnan Electric Test&Research Institute Group Co.,Ltd,Kunming 650217;School of Electrical Engineering,Chongqing University,Chongqing 400044)
出处
《云南电力技术》
2018年第4期11-14,22,共5页
Yunnan Electric Power
关键词
小波
负荷识别
噪声
负荷特性
wavelet
load identification
noise
load characteristics.