期刊文献+

基于Bi-LSTM和CNN并包含注意力机制的社区问答问句分类方法 被引量:10

Question Categorization of Community Question Answering by Combining Bi-LSTM and CNN with Attention Mechanism
下载PDF
导出
摘要 问句分类的目标是将用户提出的自然语言问句分到预先设定的类别.在社区问答中,如何准确高效的对问句进行分类是一项重要任务.本文提出了一种基于深度神经网络的问句分类方法,该方法首先将问句用词向量进行表示,然后用融合双向长短时记忆网络(Bi-LSTM)和卷积神经网络(CNN)结构并包含注意力机制的深度学习模型提取问句特征进行分类.该方法的特色在于利用Bi-LSTM和CNN在句子级文本表示的优点,充分捕捉问句特征,并结合问句的对应答案来表示问句,丰富了问句信息.实验表明,该问句分类方法准确率较高,在多个数据集上取得不错结果. The goal of question categorization is to classify natural language questions that user raised into predefined categories. How to classify question sentences accurately and efficiently is an important task in community question answering. In this study, we propose a question categorization method based on deep neural network. Firstly, the words of the question are transformed to vectors. Then, we use a novel Bidirectional Long Short-Term Memory(Bi-LSTM) based Convolutional Neural Network(CNN) model with attention mechanism to capture the most important features in a question. Finally, the features are fed into the classifier to predict the category of the question. We use the Bi-LSTM and CNN to capture the features of question because of their benefits in representing sentence level documents. We also use the answer set to enrich the information of the question. The experimental results on several datasets demonstrate the effectiveness of the proposed approach.
作者 史梦飞 杨燕 贺樑 陈成才 SHI Meng-Fei;YANG Yan;HE Liang;CHEN Cheng-Cai(School of Computer Science and Software Engineering,East China Normal University,Shanghai 200062,China;Xiaoi Robot Technology Co.Ltd.,Shanghai 201803,China)
出处 《计算机系统应用》 2018年第9期157-162,共6页 Computer Systems & Applications
基金 上海市经济和信息化委员会项目(201602024) 上海市科学技术委员会项目(14DZ2260800)~~
关键词 问句分类 答案集 注意力机制 深度神经网络 question classification answer set attention mechanism deep neural network
  • 相关文献

参考文献3

二级参考文献30

  • 1张宇,刘挺,文勖.基于改进贝叶斯模型的问题分类[J].中文信息学报,2005,19(2):100-105. 被引量:47
  • 2余正涛,樊孝忠,郭剑毅.基于支持向量机的汉语问句分类[J].华南理工大学学报(自然科学版),2005,33(9):25-29. 被引量:20
  • 3文勖,张宇,刘挺,马金山.基于句法结构分析的中文问题分类[J].中文信息学报,2006,20(2):33-39. 被引量:82
  • 4孙景广,蔡东风,吕德新,董燕举.基于知网的中文问题自动分类[J].中文信息学报,2007,21(1):90-95. 被引量:41
  • 5Li X, Roth D. Learning question classifiers[C]//Pro- ceedings of the 19th International Conference on Com- putational Linguistics (COLING2002). Taipei:Associ- ation for Computational Linguistics, 2002 : 1-7.
  • 6Li X, Roth D. Learning question classifiers :the role of semantic information[J]. Journal of Natural Language Engineering, 2006,12(3) : 229-250.
  • 7Huang Zhi-heng, Thint M, Qin Zeng-chang. Question classification using head words and their hypernyms [C]//Proeeedings of the 2008 Conference on EmpiricalMethods in Natural Language Processing (EMNLP2008). Honolulu: Association for Computa- tional Linguistics,2008:927-936.
  • 8Huang Zhi-heng, Thint M, Celikyilmaz A. Investiga- tion of question classifier in question answering[C]// Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP2009) [C]. Singapore: Association for Com- putational Linguistics, 2009 : 543-550.
  • 9Li Fang-tao, Zhang Xian, Yuan Jin-hui, et al. Classif- ying what-type questions by head noun tagging[C]// Proceedings of the 22nd International Conference on Computational Linguistics (COLING 2008). Manches- ter: Association for Computational Linguistics, 2008: 481-488.
  • 10Wu You-Zheng, Zhao Jun, Xu Bo. Chinese question classification from approach and semantic views[J]. AIRS 2005, LNCS 3689,485-490.

共引文献17

同被引文献83

引证文献10

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部