期刊文献+

Improved Q-learning algorithm for load balance in millimeter wave backhaul networks 被引量:1

Improved Q-learning algorithm for load balance in millimeter wave backhaul networks
原文传递
导出
摘要 With the intensive deployment of users and the drastic increase of traffic load, a millimeter wave (mmWave) backhaul network was widely investigated. A typical mmWave backhaul network consists of the macro base station (MBS) and the small base stations (SBSs). How to efficiently associate users with the MBS and the SBSs for load balancing is a key issue in the network. By adding a virtual power bias to the SBSs, more users can access to the SBSs to share the load of the MBS. The bias values shall be set reasonably to guarantee the backhaul efficiency and the quality of service (QoS). An improved Q-learning algorithm is proposed to effectively adjust the bias value for each SBS. In the proposed algorithm, each SBS becomes an agent with independent learning and can achieve the best behavior, namely the optimal bias value through a series of training. Besides, an improved behavior selection mechanism is adopted to improve the learning efficiency and accelerate the convergence of the algorithm. Finally, simulations conducted in the 60 GHz band demonstrate the superior performance of the proposed algorithm in backhaul efficiency and user outage probability. With the intensive deployment of users and the drastic increase of traffic load, a millimeter wave (mmWave) backhaul network was widely investigated. A typical mmWave backhaul network consists of the macro base station (MBS) and the small base stations (SBSs). How to efficiently associate users with the MBS and the SBSs for load balancing is a key issue in the network. By adding a virtual power bias to the SBSs, more users can access to the SBSs to share the load of the MBS. The bias values shall be set reasonably to guarantee the backhaul efficiency and the quality of service (QoS). An improved Q-learning algorithm is proposed to effectively adjust the bias value for each SBS. In the proposed algorithm, each SBS becomes an agent with independent learning and can achieve the best behavior, namely the optimal bias value through a series of training. Besides, an improved behavior selection mechanism is adopted to improve the learning efficiency and accelerate the convergence of the algorithm. Finally, simulations conducted in the 60 GHz band demonstrate the superior performance of the proposed algorithm in backhaul efficiency and user outage probability.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2018年第3期8-16,共9页 中国邮电高校学报(英文版)
基金 supported by the State Major Science and Technique Project (MJ-2014-S-37) the 111 Project (B08038)
关键词 millimeter wave backhaul networks load balance user association Q-LEARNING millimeter wave backhaul networks load balance user association Q-learning
  • 相关文献

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部