期刊文献+

基于深度卷积神经网络的图像分类算法 被引量:7

Image classification algorithm based on deep convolutional neural network
下载PDF
导出
摘要 针对传统的图像分类算法忽略图像多个对象之间的关系,同时存在人类感知高层语义信息和底层图像特征表达之间的障碍等不足,引入了基于深度卷积神经网络的人脸图像识别算法.该算法借助于深度学习,对经典的卷积神经网络分别从内部结构和网络框架上进行优化和改进,通过增加网络结构深度和优化训练模型提取出图像高层语义特征,继而提高图像分类的精确度.实验表明,改进后的深度卷积神经网络分类算法具有良好的有效性和鲁棒性. The traditional image classification algorithm ignores the relationship between multiple objects in the image,at the same time,there is an obstacle between human perception of high-level semantic information and underlying image feature expression.An image recognition algorithm based on deep convolutional neural network was proposed,the algorithm uses deep learning to optimize and improve the classic convolutional neural network from the internal structure and network framework respectively,by increasing the network structure depth and optimizing the training model,the high-level semantic features of the image were extracted,which in turn improves the accuracy of image classification.Experiments showed that image classification algorithm based on deep convolutional neural network had better classification effect.
作者 陈瑞瑞 CHEN Ruirui(College of Information Engineering,Zhengzhou University of Industrial Technology,Zhengzhou 451100,China)
出处 《河南科技学院学报(自然科学版)》 2018年第4期50-54,61,共6页 Journal of Henan Institute of Science and Technology(Natural Science Edition)
基金 河南省科技攻关计划项目(162102210119)
关键词 深度学习 卷积神经网络 图像分类 deep learning convolutional neural network image classification
  • 相关文献

参考文献13

二级参考文献125

  • 1肖良,戴斌,吴涛,方宇强.基于字典学习与稀疏表示的非结构化道路分割方法[J].吉林大学学报(工学版),2013,43(S1):384-388. 被引量:3
  • 2杨三序.电容式传感器在车辆检测装置中的应用[J].传感器技术,2004,23(9):74-76. 被引量:3
  • 3余天洪,王荣本,顾柏园,郭烈.基于机器视觉的智能车辆前方道路边界及车道标识识别方法综述[J].公路交通科技,2006,23(1):139-142. 被引量:22
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 5Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 6Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 7Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 8Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 9Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 10Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.

共引文献817

同被引文献55

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部