期刊文献+

基于压缩感知的单像素成像技术研究进展

Research Progress in Single-Pixel Imaging Based on Compressive Sensing
下载PDF
导出
摘要 压缩感知作为一种数据采集方式能够突破传统奈奎斯特采样定律的限制,大大减少数据冗余,是一种被应用于众多领域的理论.同时其在信息安全领域的应用也越来越受到重视.介绍了一种利用压缩感知理论搭建的单像素成像系统,从压缩感知基本理论出发,详细阐述了单像素成像技术的基本原理以及实现方法,分析了单像素成像系统在尺寸、精度、速度、成本等方面面临的问题,最后分析了国内外在单像素成像技术方面的研究现状和发展趋势,提出了该技术现有研究的不足之处并给出了未来的研究方向. Compressive sensing as a data acquisition method breaks through the limitations of the traditional Nyquist sampling law and greatly reduced the data redundancy. It has been applied in many fields so far. At the same time, its application in information security has also been paid more and more attention. This paper introduces a single pixel imaging system based on compressive sensing theory. From the basic theory of compressed sensing, the basic principle and implementation method of single pixel imaging technology are described in detail, and the problems faced in different aspects are analyzed. Finally, the domestic and foreign issues are analyzed. In the research status and development trend of single pixel imaging technology, the inadequacies of the existing research of this technology are proposed and future research directions are given.
作者 吕志强 陆云 孔庆善 薛亚楠 Lu Zhiqiang;Lu Yun;Kong Qingshan;and Xue Ya'nan(Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093;School of Cyber Security,University of Chinese Academy of Sciences,Beijing 100049)
出处 《信息安全研究》 2018年第9期783-791,共9页 Journal of Information Security Research
关键词 奈奎斯特采样定率 压缩感知 数据采集 图像重构 单像素成像 Nyquist sampling law compressive sensing data acquisition image reconstruction single pixel imaging
  • 相关文献

参考文献4

二级参考文献142

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2黄震,刘彬.脉冲激光测距中时间间隔测量的新方法[J].光电子.激光,2006,17(9):1153-1155. 被引量:17
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献743

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部