期刊文献+

Stieltjes-Thiele型二元混合有理插值

Stieltjes-Thiele Blending Rational Interpolation
下载PDF
导出
摘要 文章基于Stieltjes型连分式,在下三角形网格上构造了一种Stieltjes-Thiele型二元混合有理插值函数.通过定义混合逆差商,由Stieltjes型和Thiele型连分式的递推性质,证明该有理插值函数满足插值性,且给出了该插值函数的特征性和误差估计.最后,通过数值算例验证了该算法的有效性. Based on the Stiehjes type continuous fraction, a kind of Stiehjes-Thiele binary mixed rational in-terpolation is constructed on the lower triangular mesh. By defining the mixed inverse diffrence quotient, and u-sing the recursive nature of Stieltjes-type and Thiele-type continuous fraction, the rational interpolation function sat- isfies the given interpolation property, and the characterization and error of the interpolated function are obtained. Finally, a numerical example is given to illustrate the effectiveness of algorithm.
作者 郑玉霞 陈豫眉 杨爽 ZHENG Yu-xia;CHEN Yu-mei;Yang Shuang(College of Mathematics and Infformation,China West Normal University,Nanchong 637009,China;College of Mathematics and Education,China West Normal University,Nanchong 637009,China)
出处 《洛阳师范学院学报》 2018年第8期3-8,共6页 Journal of Luoyang Normal University
基金 四川省教育厅自然科学重点项目(15ZA0149) 西华师范大学英才科研基金(17YC371)
关键词 下三角网格 混合逆差商 有理插值 lower triangular mesh mixed inverse difference quotient rational interpoolation
  • 相关文献

参考文献4

二级参考文献18

  • 1TAN JIEQING AND TANG SHUO.VECTOR VALUED RATIONAL INTERPOLANTS BY TRIPLE BRANCHED CONTINUED FRACTIONS[J].Applied Mathematics(A Journal of Chinese Universities),1997,12(1):99-108. 被引量:8
  • 2朱功勤,檀结庆.矩形网格上二元向量有理插值的对偶性[J].计算数学,1995,17(3):311-320. 被引量:19
  • 3王家正.Stieltjes-Newton型有理插值[J].应用数学与计算数学学报,2006,20(2):77-82. 被引量:13
  • 4Cuyt A,Wuytack L.Nonlinear Methods in Numerical Analysis[M].Amsterdam:Elsevier Science Pubishers B V,1987.
  • 5Tan Jieqing,Tang Shuo.Composite schemes for multivariate blending rational interpolation[J].Journal of Computational and Applied Mathematics,2002,144(1-2):263-275.
  • 6Tang Shuo,Fang Yi.The construction of bivariate branched continued fraction osculatory rational interpolation[J].Journal of Information and Computational Science,2006,3 (4):877-885.
  • 7Zhao Qianjin,Tan Jieqing.Block-based Thiele-like blending rational interpolation[J].Journal of Computational and Applied Mathematics,2006,195(1-2):312-325.
  • 8Siemaszko W.Thiele-type branched continued fractions for two variable functions.[J].Journal of Computational and Applied Mathematics,1983,9(2):137-154.
  • 9Tan Jieqing,Fang Yi.Newton-Thiele's rational interpolants[J].Numerical Algorithms,2000,24(1-2):141-157.
  • 10Tan Jieqing.Bivariate blending rational interpolants[J].Approximation Theory and Its Applacation,1999,15(2):74-83.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部