期刊文献+

Seismic Data Recovery with Curvelet Bivariate Shrinkage Function Based on Compressed Sensing

Seismic Data Recovery with Curvelet Bivariate Shrinkage Function Based on Compressed Sensing
下载PDF
导出
摘要 Recovery of under-sampled seismic data is a critical problem,in oil and gas exploration,therefore recovery algorithms with iterative shrinkage based on compressed sensing have been recently proposed. However most of these algorithms usually adopt a soft shrinkage function,which assumes that all of the sparse coefficients are independent of each other in curvelet or other domains,little attention has so far been devoted to the inter-dependencies of coefficients. In this paper,the dependencies of parent-child curvelet coefficients of seismic data are exploited by Bayesian estimation,moreover the new seismic data recovery algorithm via curvelet-based bivariate shrinkage function is proposed. First the respective parent-child curvelet coefficients joint distribution models of fully-sampled seismic data and noise signal caused by missing traces are established,then the bivariate shrinkage function according to the Bayesian maximum posterior probability estimation is obtained,finally the Landweber iterative shrinkage algorithm is used in the recovery process.When compared with existing recovery algorithms,it is proved that the proposed algorithm can obtain higher PSNR performance,and maintains the texture details better in events of seismic data Recovery of under-sampled seismic data is a critical problem,in oil and gas exploration,therefore recovery algorithms with iterative shrinkage based on compressed sensing have been recently proposed. However most of these algorithms usually adopt a soft shrinkage function,which assumes that all of the sparse coefficients are independent of each other in curvelet or other domains,little attention has so far been devoted to the inter-dependencies of coefficients. In this paper,the dependencies of parent-child curvelet coefficients of seismic data are exploited by Bayesian estimation,moreover the new seismic data recovery algorithm via curvelet-based bivariate shrinkage function is proposed. First the respective parent-child curvelet coefficients joint distribution models of fully-sampled seismic data and noise signal caused by missing traces are established,then the bivariate shrinkage function according to the Bayesian maximum posterior probability estimation is obtained,finally the Landweber iterative shrinkage algorithm is used in the recovery process.When compared with existing recovery algorithms,it is proved that the proposed algorithm can obtain higher PSNR performance,and maintains the texture details better in events of seismic data recovery
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第5期86-96,共11页 哈尔滨工业大学学报(英文版)
基金 Sponsored by the National Natural Science Foundation of China(Grant o.61374127)
关键词 SEISMIC data RECOVERY compressed sensing iterative SHRINKAGE BIVARIATE SHRINKAGE function Seismic data recovery compressed sensing iterative shrinkage bivariate shrinkage function
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部