摘要
针对显示器电源线传导泄漏信号中红信号识别的难题,该文提出基于粒子群(PSO)算法优化支持向量机(SVM)的识别方法。首先对传导泄漏信号进行滤波预处理并分段,然后利用粒子群-支持向量机(PSO-SVM)对传导泄漏信号进行训练、分类并与SVM分类性能进行对比,最后应用PSO-SVM实现了显示图像的还原。结果表明此算法可以准确实现电源线传导泄漏信号中红信号的识别,且识别率明显高于SVM分类器。
In order to identify the red signal in the conduction leakage signal of the display power line effectively, a Particle Swarm Optimization-Support Vector Mechine (PSO-SVM) algorithm based on Particle Swarm Optimization (PSO) algorithm for parameter optimization is proposed. Firstly, the conducted leakage signal is filtered, then the PSO-SVM is used to train and classify the conducted leakage signals and compared with the SVM classification. Finally, the display image is reconstructed using PSO-SVM. The result shows that the the red signal can be effectively identified, and the identification rate is significantly higher than the SVM classifier.
作者
周长林
钱志升
王勤民
余道杰
程俊平
ZHOU Changlin;QIAN Zhisheng;WANG Qinmin;YU Daojie;CHENG Junping(PLA Information Engineering University,Zhengzhou 450001,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2018年第9期2206-2211,共6页
Journal of Electronics & Information Technology
基金
国家自然科学基金(61271104
61201056)~~
关键词
传导泄漏
电源线
识别
粒子群-支持向量机
还原
Conducted leakage
Power line
Recognition
Particle Swarm Optimization-Support Vector Mechine (PSO-SVM)
Reconstruction