期刊文献+

微博意图分类在地震事件应急中的应用研究 被引量:1

Research on the Intention Classification of Weibo in the Emergency of Earthquake Events
下载PDF
导出
摘要 探究微博意图分类在地震事件应急中的研究,通过爬虫程序获得和地震相关的微博文本数据,对微博文本数据进行预处理后得到所需要的分类数据,然后通过WEKA平台应用决策树、支持向量机和朴素贝叶斯多项式模型进行文本分类实验探究。实验结果表明采用支持向量机模型分类准确度最高达到90%以上。通过对微博地震数据的意图分类探究,可以及时得到地震中寻求帮助和提供救助的相关信息,合理调度应急资源。 Mainly explores the research of micro-blog's intention in the earthquake event emergency, obtains the micro-blog text data related to theearthquake through the crawler program, and preprocesses the micro-blog text data to get the classified data we need, and then applies thedecision tree, the support vector machine, and the naive Bayes polynomial model through the Weka platform, carries out the type of textclassification experiment. The experimental results show that the accuracy of the support vector machine model is over 90%. By studyingthe intention classification of micro-blog seismic data, gets information about help and rescue in time, and rationally dispatch emergencyresources.
作者 闫家滕 栾翠菊 YAN Jia-teng;LUAN Cui-ju(College of Information Engineering,Shanghai Maritime University,Shanghai 201306)
出处 《现代计算机(中旬刊)》 2018年第8期38-41,共4页 Modern Computer
关键词 文本分类 INTENT Analysis 特征选择 WEKA Text Classification Intent Analysis Feature Selection WEKA
  • 相关文献

参考文献5

二级参考文献50

  • 1人文主义[EB/OL].(2007-12-02).http://baike.baidu.com.
  • 2化柏林.知识抽取中的停用词处理技术[J].现代图书情报技术,2007(8):48-51. 被引量:39
  • 3D. D. Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. In: Proc. of the 10th European Conf. on Machine Learning. New York: Springer,1998, 4-15.
  • 4Y. Yang, X. Lin. A re-examination of text categorization methods. In: The 22nd Annual Int'l ACM SIGIR Conf. onResearch and Development in the Information Retrieval. NewYork: ACM Press, 1999.
  • 5Y. Yang, C. G. Chute. An example based mapping method for text categorization and retrieval. ACM Trans. on Information Systems, 1994, 12(3): 252 -277.
  • 6E. Wiener. A neural network approach to topic spotting. The 4th Annual Syrup. on Document Analysis and Information Retrieval,Las Vegas, NV, 1995.
  • 7R. E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predications. In: Proc. of the 11th Annual Conf.on Computational Learning Theory. New York: ACM Press,1998. 80--91.
  • 8T. Joachims. Text categorization with support vector machines:Learning with many relevant features. In: Proc. of the 10th European Conf. on Machine Learning. New York: Springer,1998. 137-142.
  • 9Y. Yang. An evaluation of statistical approaches to text categorization. Information Retrieval, 1999, 1 ( 1 ) : 76-- 88.
  • 10R. Adwait. Maximum entropy models for natural language ambiguity resolution: [ Ph. D. dissertation ] . Pennsylvania:University of Pennsylvania, 1998.

共引文献133

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部