期刊文献+

求解波动方程的准粒子离散修正辛算法

Modified symplectic quasi-particles discrete methods for simulation of wave propogation
下载PDF
导出
摘要 针对波动方程求解,在Hamilton体系下建立了对空间离散的准粒子体系,该准粒子体系实现简单,物理意义明确;在时间离散方面,构造了一种适合高效声波模拟的修正辛格式,该格式是在常规的二阶Partitioned Runge-Kutta(PRK)基础之上构造而成,其具有三阶时间精度,从理论上分析了修正辛格式的数值稳定性和频散性能.数值结果表明,本文提出的方法在计算时间,计算精度和计算存储量等各方面性能都有相应改善。 Hamiltonian system with quasi-particles for spatial discrete of acoustic wave propogation is presented. A modified symplectic scheme for temporal discretization of wave equation is proposed. First, we transformed the wave equation into a Hamilton system. An explicit symplecitc Partitioned Runge-Kutta (PRK) scheme is used to solve the Hamilton system. Then, the additional spatial discretization term is added into the symplectic PRK scheme. Theoretical analytic shows the new scheme has lower dispersion and long-term calculation ability than that of the conventional symplectic schemes. Numerical results indicate that the present method is effective and feasible, such as the low numerical dispersion, high stability and long-time performance of the new scheme.
作者 苏波 刘知贵 庹先国 李怀良 SU Bo;LIU Zhigui;TUO Xianguo;LI Huailiang(Graduate School,China Academy of Engineering Physics Mianyang 621900;School of Computer Science and Technology,Southwest University of Science and Technology Mianyang 621010;Sichuan University of science and Engineering Zigong 643002;Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory Mianyang 621010)
出处 《声学学报》 EI CSCD 北大核心 2018年第5期843-849,共7页 Acta Acustica
基金 国家重大科研仪器设备研制专项(41227802) 国家自然科学基金面上项目(41774118)资助
  • 相关文献

参考文献6

二级参考文献51

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部