摘要
本文针对已有鼠标轨迹识别方法存在的问题,提出了一种基于并行投票决策树的半监督鼠标轨迹识别方法.首先,本文对鼠标轨迹进行分析,根据多尺度特征思想提取出包括局部轨迹在内的105个特征,并对鼠标轨迹特征进行了划分.其次,本文提出了鼠标轨迹识别的半监督学习方法,避免过拟合和数据噪声的影响.最后,为了提高方法的效率,本文提出并行投票决策树模型,训练多尺度特征,对人的鼠标轨迹和机器鼠标轨迹进行分类.实验结果显示,本文方法具有较好的性能.
Aiming at the problems in the mouse track recognition method,this paper presents a semi-supervised mouse trajectory recognition method based on parallel voting decision tree.Firstly,105 features including global ones,local ones and multi-scale ones are selected and extracted,and then,they are analyzed and divided into groups.Secondly,we propose a semi-supervised mouse tracking recognition method to avoid over-fitting and data noise.Then,to make our method more efficient,we propose a parallel voting decision tree model,and train the multi-scale features using this model.Finally,the experimental results demonstrate that our mouse tracking recognition method works better than some stateofart methods.
作者
孟广婷
王红
刘海燕
MENG Guang-ting;WANG Hong;LIU Hai-yan(School of Information Science and Engineering,Shandong Normal University,Ji'nan 250358,China;Shandong Provincial Key Laboratory for Distributed Computer Software Novel Technology,Ji'nan 250014,China;Institute of Biomedical Sciences,Shandong Normal University,Ji'nan 250014,China)
出处
《小型微型计算机系统》
CSCD
北大核心
2018年第9期2050-2055,共6页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61672329
61373149
61472233
61572300
81273704)资助
山东省科技计划项目(2014GGX101026)资助
山东省教育科学规划项目(ZK1437B010)资助
山东省泰山学者基金项目(TSHW201502038
20110819)资助
山东省精品课程项目(2012BK294
2013BK399
2013BK402)资助
关键词
鼠标轨迹识别
多尺度
半监督
并行投票决策树
mouse trajectory recognition
multi-scale
semi-supervised
parallel voting decision tree